JAV-Gen / tools /datasets /datautil.py
kaiw7's picture
Upload folder using huggingface_hub
e490e7e verified
import argparse
import html
import json
import os
import random
import re
from functools import partial
from glob import glob
import subprocess
import soundfile as sf
import librosa
from pydub.utils import mediainfo
import cv2
import numpy as np
import pandas as pd
from PIL import Image
from tqdm import tqdm
import torchvision.transforms as T
from torchvision.io import write_video
from javisdit.datasets.read_video import read_video
from javisdit.datasets.read_audio import read_audio
from .utils import IMG_EXTENSIONS
tqdm.pandas()
try:
from pandarallel import pandarallel
PANDA_USE_PARALLEL = True
except ImportError:
PANDA_USE_PARALLEL = False
def apply(df, func, **kwargs):
if PANDA_USE_PARALLEL:
return df.parallel_apply(func, **kwargs)
return df.progress_apply(func, **kwargs)
TRAIN_COLUMNS = ["path", "text", "num_frames", "fps", "height", "width", "aspect_ratio", "resolution", "text_len"]
# ======================================================
# --info
# ======================================================
def get_video_length(cap, method="header"):
assert method in ["header", "set"]
if method == "header":
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
else:
cap.set(cv2.CAP_PROP_POS_AVI_RATIO, 1)
length = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
return length
def get_info_old(path):
try:
ext = os.path.splitext(path)[1].lower()
if ext in IMG_EXTENSIONS:
im = cv2.imread(path)
if im is None:
return 0, 0, 0, np.nan, np.nan, np.nan
height, width = im.shape[:2]
num_frames, fps = 1, np.nan
else:
cap = cv2.VideoCapture(path)
num_frames, height, width, fps = (
get_video_length(cap, method="header"),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
float(cap.get(cv2.CAP_PROP_FPS)),
)
hw = height * width
aspect_ratio = height / width if width > 0 else np.nan
return num_frames, height, width, aspect_ratio, fps, hw
except:
return 0, 0, 0, np.nan, np.nan, np.nan
def get_info(path):
try:
ext = os.path.splitext(path)[1].lower()
if ext in IMG_EXTENSIONS:
return get_image_info(path)
else:
return get_video_info(path)
except:
return 0, 0, 0, np.nan, np.nan, np.nan
def get_image_info(path, backend="pillow"):
if backend == "pillow":
try:
with open(path, "rb") as f:
img = Image.open(f)
img = img.convert("RGB")
width, height = img.size
num_frames, fps = 1, np.nan
hw = height * width
aspect_ratio = height / width if width > 0 else np.nan
return num_frames, height, width, aspect_ratio, fps, hw
except:
return 0, 0, 0, np.nan, np.nan, np.nan
elif backend == "cv2":
try:
im = cv2.imread(path)
if im is None:
return 0, 0, 0, np.nan, np.nan, np.nan
height, width = im.shape[:2]
num_frames, fps = 1, np.nan
hw = height * width
aspect_ratio = height / width if width > 0 else np.nan
return num_frames, height, width, aspect_ratio, fps, hw
except:
return 0, 0, 0, np.nan, np.nan, np.nan
else:
raise ValueError
def get_video_info(path, backend="cv2"):
if backend == "torchvision":
try:
vframes, infos = read_video(path)
num_frames, height, width = vframes.shape[0], vframes.shape[2], vframes.shape[3]
if "video_fps" in infos:
fps = infos["video_fps"]
else:
fps = np.nan
hw = height * width
aspect_ratio = height / width if width > 0 else np.nan
return num_frames, height, width, aspect_ratio, fps, hw
except:
return 0, 0, 0, np.nan, np.nan, np.nan
elif backend == "cv2":
try:
cap = cv2.VideoCapture(path)
num_frames, height, width, fps = (
get_video_length(cap, method="set"),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
float(round(cap.get(cv2.CAP_PROP_FPS))),
)
hw = height * width
aspect_ratio = height / width if width > 0 else np.nan
return num_frames, height, width, aspect_ratio, fps, hw
except:
return 0, 0, 0, np.nan, np.nan, np.nan
else:
raise ValueError
def get_audio_info(audio_path, backend="pydub"):
if backend == "pydub":
try:
info = mediainfo(audio_path)
duration = float(info['duration']) # seconds
sample_rate = int(info['sample_rate']) # Hz
channels = int(info['channels']) # channels
return duration, sample_rate, channels
except:
return 0, 0, 0
else:
raise ValueError
# ======================================================
# --refine-llm-caption
# ======================================================
LLAVA_PREFIX = [
"The video shows",
"The video captures",
"The video features",
"The video depicts",
"The video presents",
"The video features",
"The video is ",
"In the video,",
"The image shows",
"The image captures",
"The image features",
"The image depicts",
"The image presents",
"The image features",
"The image is ",
"The image portrays",
"In the image,",
]
def remove_caption_prefix(caption):
for prefix in LLAVA_PREFIX:
if caption.startswith(prefix) or caption.startswith(prefix.lower()):
caption = caption[len(prefix) :].strip()
if caption[0].islower():
caption = caption[0].upper() + caption[1:]
return caption
return caption
# ======================================================
# --merge-cmotion
# ======================================================
CMOTION_TEXT = {
"static": "static",
"pan_right": "pan right",
"pan_left": "pan left",
"zoom_in": "zoom in",
"zoom_out": "zoom out",
"tilt_up": "tilt up",
"tilt_down": "tilt down",
# "pan/tilt": "The camera is panning.",
# "dynamic": "The camera is moving.",
# "unknown": None,
}
CMOTION_PROBS = {
# hard-coded probabilities
"static": 1.0,
"zoom_in": 1.0,
"zoom_out": 1.0,
"pan_left": 1.0,
"pan_right": 1.0,
"tilt_up": 1.0,
"tilt_down": 1.0,
# "dynamic": 1.0,
# "unknown": 0.0,
# "pan/tilt": 1.0,
}
def merge_cmotion(caption, cmotion):
text = CMOTION_TEXT[cmotion]
prob = CMOTION_PROBS[cmotion]
if text is not None and random.random() < prob:
caption = f"{caption} Camera motion: {text}."
return caption
# ======================================================
# --lang
# ======================================================
def build_lang_detector(lang_to_detect):
from lingua import Language, LanguageDetectorBuilder
lang_dict = dict(en=Language.ENGLISH)
assert lang_to_detect in lang_dict
valid_lang = lang_dict[lang_to_detect]
detector = LanguageDetectorBuilder.from_all_spoken_languages().with_low_accuracy_mode().build()
def detect_lang(caption):
confidence_values = detector.compute_language_confidence_values(caption)
confidence = [x.language for x in confidence_values[:5]]
if valid_lang not in confidence:
return False
return True
return detect_lang
# ======================================================
# --clean-caption
# ======================================================
def basic_clean(text):
import ftfy
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
BAD_PUNCT_REGEX = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
) # noqa
def clean_caption(caption):
import urllib.parse as ul
from bs4 import BeautifulSoup
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# &quot;
caption = re.sub(r"&quot;?", "", caption)
# &amp
caption = re.sub(r"&amp", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(BAD_PUNCT_REGEX, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = basic_clean(caption)
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
def text_preprocessing(text, use_text_preprocessing: bool = True):
if use_text_preprocessing:
# The exact text cleaning as was in the training stage:
text = clean_caption(text)
text = clean_caption(text)
return text
else:
return text.lower().strip()
# ======================================================
# load caption
# ======================================================
def load_caption(path, ext):
try:
assert ext in ["json"]
json_path = '.'.join(path.split(".")[:-1]) + ".json"
with open(json_path, "r") as f:
data = json.load(f)
caption = data["caption"]
return caption
except:
return ""
# ======================================================
# --clean-caption
# ======================================================
DROP_SCORE_PROB = 0.2
def score_to_text(data):
text = data["text"]
scores = []
# aesthetic
if "aes" in data:
aes = data["aes"]
if random.random() > DROP_SCORE_PROB:
score_text = f"aesthetic score: {aes:.1f}"
scores.append(score_text)
if "flow" in data:
flow = data["flow"]
if random.random() > DROP_SCORE_PROB:
score_text = f"motion score: {flow:.1f}"
scores.append(score_text)
if len(scores) > 0:
text = f"{text} [{', '.join(scores)}]"
return text
# ======================================================
# read & write
# ======================================================
def read_file(input_path):
if input_path.endswith(".csv"):
return pd.read_csv(input_path)
elif input_path.endswith(".parquet"):
return pd.read_parquet(input_path)
else:
raise NotImplementedError(f"Unsupported file format: {input_path}")
def save_file(data, output_path):
output_dir = os.path.dirname(output_path)
if not os.path.exists(output_dir) and output_dir != "":
os.makedirs(output_dir)
if output_path.endswith(".csv"):
return data.to_csv(output_path, index=False)
elif output_path.endswith(".parquet"):
return data.to_parquet(output_path, index=False)
else:
raise NotImplementedError(f"Unsupported file format: {output_path}")
def read_data(input_paths):
data = []
input_name = ""
input_list = []
for input_path in input_paths:
input_list.extend(glob(input_path))
print("Input files:", input_list)
for i, input_path in enumerate(input_list):
if not os.path.exists(input_path):
continue
data.append(read_file(input_path))
input_name += os.path.splitext(os.path.basename(input_path))[0]
if i != len(input_list) - 1:
input_name += "+"
print(f"Loaded {len(data[-1])} samples from '{input_path}'.")
if len(data) == 0:
print(f"No samples to process. Exit.")
exit()
data = pd.concat(data, ignore_index=True, sort=False)
print(f"Total number of samples: {len(data)}")
return data, input_name
def unify_fps(input_path, dst_fps, overwrite=True):
src_fps = get_video_info(input_path)[-2]
if src_fps != dst_fps:
ext = os.path.splitext(input_path)[1].lower()
output_path = input_path.replace(ext, f'_fps{dst_fps}' + ext)
ffmpeg_command = [
"ffmpeg",
"-y",
"-i", input_path,
"-r", f"{dst_fps}",
output_path
]
result = subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode == 0:
if overwrite:
os.rename(output_path, input_path)
else:
input_path = output_path
src_fps = dst_fps
else:
print(result.stderr)
num_frames = get_video_info(input_path, backend='torchvision')[0]
return input_path, src_fps, num_frames
def extract_audio(input_path, dst_sr=16000, backend='ffmpeg'):
ext = os.path.splitext(input_path)[1]
save_path = input_path.replace(ext, '.wav')
audio_id = os.path.splitext(os.path.basename(save_path))[0]
if os.path.exists(save_path):
try:
audio, ainfo = read_audio(save_path, backend='sf')
assert len(audio) > 0
sr = int(ainfo['audio_fps'])
if dst_sr is not None:
assert sr == dst_sr
return save_path, audio_id, sr
except:
pass
if backend == 'torch':
audio, ainfo = read_audio(input_path, backend='torch')
audio = audio.numpy()
sr = int(ainfo['audio_fps'])
if sr != dst_sr:
audio = librosa.resample(audio, orig_sr=sr, target_sr=dst_sr)
sr = dst_sr
sf.write(save_path, audio, sr)
else:
ffmpeg_command = [
"ffmpeg",
"-i", input_path,
"-f", "wav"
]
if dst_sr is not None:
ffmpeg_command.extend(["-ar", f"{dst_sr}"])
ffmpeg_command.append(save_path)
result = subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
sr = dst_sr
return save_path, audio_id, sr
def trim_audio(input_path, max_sec):
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", input_path],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
try:
duration = float(result.stdout.strip())
except:
return 0
if duration > max_sec:
ext = os.path.splitext(input_path)[1]
temp_path = input_path.replace(ext, '_tmp' + ext)
subprocess.run([
"ffmpeg", "-i", input_path, "-t", str(max_sec), temp_path, "-y"
], check=True)
subprocess.run(["mv", temp_path, input_path], check=True)
duration = max_sec
return duration
def trim_video(input_path, max_sec):
vinfo = get_video_info(input_path, backend='torchvision')
num_frames, fps = vinfo[0], vinfo[-2]
duration = num_frames / fps
if duration > max_sec:
ext = os.path.splitext(input_path)[1]
temp_path = input_path.replace(ext, '_tmp' + ext)
subprocess.run([
"ffmpeg", "-i", input_path, "-t", str(max_sec), temp_path, "-y"
], check=True)
subprocess.run(["mv", temp_path, input_path], check=True)
duration = max_sec
num_frames = get_video_info(input_path, backend='torchvision')[0]
return num_frames
def resample_audio(input_path, dst_sr=16000):
try:
audio, ainfo = read_audio(input_path, backend='sf')
src_sr = int(ainfo['audio_fps'])
if src_sr == dst_sr:
return src_sr
audio = audio.cpu().numpy()
audio = librosa.resample(audio, orig_sr=src_sr, target_sr=dst_sr)
sf.write(input_path, audio, dst_sr)
return dst_sr
except:
return 0
def set_dummy_video(input_path):
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", input_path],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
try:
duration = float(result.stdout.strip())
except:
duration = 0
path, relpath = ['placeholder.mp4'] * 2
_id = 'placeholder'
fps = 24
num_frames = int(duration * fps)
height, width, aspect_ratio, resolution = 720, 1280, 0.5625, 921600
text = 'placeholder'
speech = -1
return path, _id, relpath, num_frames, \
height, width, aspect_ratio, fps, resolution,\
speech, text
def video_crop_resize(input_path, target_wh):
"""
Resize and crop a video to the target width and height while maintaining as much original information as possible.
Args:
input_path (str): Path to the input video.
output_path (str): Path to save the processed video.
target_wh (tuple): Target width and height as (width, height).
"""
# Target dimensions
dst_w, dst_h = target_wh
dst_as = dst_w / dst_h
resizer = T.Resize((dst_h, dst_w))
dst_res = dst_w * dst_h
# Read video and get metadata
video, vinfo = read_video(input_path, backend='av')
fps = int(round(vinfo['video_fps']))
_, _, H, W = video.shape # Frames, Channels, Height, Width
# Determine crop dimensions for 16:9 ratio
if W / H > dst_as: # Wider than 16:9
new_width = int(round(H * dst_as))
new_height = H
x_crop = (W - new_width) // 2
y_crop = 0
else: # Taller or equal to 16:9
new_width = W
new_height = int(round(W / dst_as))
x_crop = 0
y_crop = (H - new_height) // 2
# Perform crop and resize
cropped_video = video[:, :, y_crop:y_crop+new_height, x_crop:x_crop+new_width]
resized_video = resizer(cropped_video).permute(0, 2, 3, 1)
# Save processed video
ext = os.path.splitext(input_path)[-1]
audio_path = input_path.replace(ext, '.wav')
audio, ainfo = read_audio(audio_path, backend='sf')
audio_fps = int(ainfo['audio_fps'])
if audio is not None and len(audio.shape) == 1:
audio = audio[None].repeat(2, 1)
temp_path = input_path.replace(ext, '_tmp'+ext)
write_video(temp_path, resized_video, fps=fps, video_codec="h264",
audio_array=audio, audio_fps=audio_fps, audio_codec='aac')
subprocess.run(["mv", temp_path, input_path], check=True)
return dst_w, dst_h, dst_as, dst_res
def fix_video(input_path):
cap = cv2.VideoCapture(input_path)
if get_video_length(cap, 'header') != get_video_length(cap, 'set'):
ext = os.path.splitext(input_path)[-1]
cache_path = input_path.replace(ext, f'_fix{ext}')
ffmpeg_command = [
"ffmpeg",
"-i", input_path,
"-c:v", "libx264",
"-c:a", "aac",
"-crf", "18" ,
"-preset", "veryfast",
"-y", cache_path
]
result = subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
os.rename(cache_path, input_path)
print('fixed:', input_path)
cap.release()
num_frames, _, _, _, fps, _ = get_video_info(input_path)
return num_frames, fps
# ======================================================
# main
# ======================================================
# To add a new method, register it in the main, parse_args, and get_output_path functions, and update the doc at /tools/datasets/README.md#documentation
def main(args):
# reading data
data, input_name = read_data(args.input)
# make difference
if args.difference is not None:
data_diff = pd.read_csv(args.difference)
print(f"Difference csv contains {len(data_diff)} samples.")
data = data[~data["path"].isin(data_diff["path"])]
input_name += f"-{os.path.basename(args.difference).split('.')[0]}"
print(f"Filtered number of samples: {len(data)}.")
# make intersection
if args.intersection is not None:
data_new = pd.read_csv(args.intersection)
print(f"Intersection csv contains {len(data_new)} samples.")
cols_to_use = data_new.columns.difference(data.columns)
col_on = "path"
# if 'id' in data.columns and 'id' in data_new.columns:
# col_on = 'id'
cols_to_use = cols_to_use.insert(0, col_on)
data = pd.merge(data, data_new[cols_to_use], on=col_on, how="inner")
print(f"Intersection number of samples: {len(data)}.")
# get output path
output_path = get_output_path(args, input_name)
# preparation
if args.lang is not None:
detect_lang = build_lang_detector(args.lang)
if args.count_num_token == "t5":
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("DeepFloyd/t5-v1_1-xxl")
# IO-related
if args.load_caption is not None:
assert "path" in data.columns
data["text"] = apply(data["path"], load_caption, ext=args.load_caption)
if args.info:
info = apply(data["path"], get_info)
(
data["num_frames"],
data["height"],
data["width"],
data["aspect_ratio"],
data["fps"],
data["resolution"],
) = zip(*info)
if args.video_info:
info = apply(data["path"], get_video_info)
(
data["num_frames"],
data["height"],
data["width"],
data["aspect_ratio"],
data["fps"],
data["resolution"],
) = zip(*info)
if args.audio_info:
info = apply(data["audio_path"], get_audio_info)
(
data["audio_length_s"],
data["audio_fps"],
data["audio_channels"],
) = zip(*info)
if args.ext:
assert "path" in data.columns
data = data[apply(data["path"], os.path.exists)]
if args.uni_fps is not None:
info = apply(data["path"], unify_fps, dst_fps=args.uni_fps, overwrite=args.overwrite)
data["path"], data["fps"], data["num_frames"] = zip(*info)
if args.extract_audio:
info = apply(data["path"], extract_audio, dst_sr=args.audio_sr)
data["audio_path"], data['audio_id'], data["audio_fps"] = zip(*info)
if args.trim_audio:
duration = apply(data["audio_path"], trim_audio, max_sec=args.trim_audio)
data = data[np.array(duration) > 0]
if args.trim:
data['num_frames'] = apply(data["path"], trim_video, max_sec=args.trim)
audio_duration = apply(data["audio_path"], trim_audio, max_sec=args.trim)
data = data[np.array(audio_duration) > 0]
if args.crop_resize:
assert len(args.crop_resize) == 2
info = apply(data["path"], video_crop_resize, target_wh=args.crop_resize)
data['width'], data['height'], data['aspect_ratio'], data['resolution'] = zip(*info)
if args.resample_audio:
data["audio_fps"] = apply(data["audio_path"], resample_audio, dst_sr=args.audio_sr)
data = data[data["audio_fps"] == args.audio_sr]
if args.dummy_video:
info = apply(data["audio_path"], set_dummy_video)
path, _id, relpath, num_frames, height, width, aspect_ratio, \
fps, resolution, speech, text = zip(*info)
data = {'path': path, 'id': _id, 'relpath': relpath, 'num_frames': num_frames,
'height': height, 'width': width, 'aspect_ratio': aspect_ratio,
'fps': fps, 'resolution': resolution,
'audio_path': data['audio_path'], 'audio_fps': data['audio_fps'],
'speech': speech, 'text': text, 'audio_text': data['audio_text']}
data = pd.DataFrame(data)
if args.fix_video:
info = apply(data["path"], fix_video)
data["num_frames"], data['fps'] = zip(*info)
# filtering
if args.remove_url:
assert "text" in data.columns
data = data[~data["text"].str.contains(r"(?P<url>https?://[^\s]+)", regex=True)]
if args.lang is not None:
assert "text" in data.columns
data = data[data["text"].progress_apply(detect_lang)] # cannot parallelize
if args.remove_empty_path:
assert "path" in data.columns
data = data[data["path"].str.len() > 0]
data = data[~data["path"].isna()]
if args.remove_empty_caption:
assert "text" in data.columns
data = data[data["text"].str.len() > 0]
data = data[~data["text"].isna()]
if args.remove_path_duplication:
assert "path" in data.columns
data = data.drop_duplicates(subset=["path"])
if args.path_subset:
data = data[data["path"].str.contains(args.path_subset)]
# processing
if args.relpath is not None:
data["path"] = apply(data["path"], lambda x: os.path.relpath(x, args.relpath))
if args.abspath is not None:
data["path"] = apply(data["path"], lambda x: os.path.join(args.abspath, x))
if args.path_to_id:
data["id"] = apply(data["path"], lambda x: os.path.splitext(os.path.basename(x))[0])
if args.merge_cmotion:
data["text"] = apply(data, lambda x: merge_cmotion(x["text"], x["cmotion"]), axis=1)
if args.refine_llm_caption:
assert "text" in data.columns
data["text"] = apply(data["text"], remove_caption_prefix)
if args.append_text is not None:
assert "text" in data.columns
data["text"] = data["text"] + args.append_text
if args.score_to_text:
data["text"] = apply(data, score_to_text, axis=1)
if args.clean_caption:
assert "text" in data.columns
data["text"] = apply(
data["text"],
partial(text_preprocessing, use_text_preprocessing=True),
)
if args.count_num_token is not None:
assert "text" in data.columns
data["text_len"] = apply(data["text"], lambda x: len(tokenizer(x)["input_ids"]))
if args.update_text is not None:
data_new = pd.read_csv(args.update_text)
num_updated = data.path.isin(data_new.path).sum()
print(f"Number of updated samples: {num_updated}.")
data = data.set_index("path")
data_new = data_new[["path", "text"]].set_index("path")
data.update(data_new)
data = data.reset_index()
# sort
if args.sort is not None:
data = data.sort_values(by=args.sort, ascending=False)
if args.sort_ascending is not None:
data = data.sort_values(by=args.sort_ascending, ascending=True)
# filtering
if args.filesize:
assert "path" in data.columns
data["filesize"] = apply(data["path"], lambda x: os.stat(x).st_size / 1024 / 1024)
if args.fsmax is not None:
assert "filesize" in data.columns
data = data[data["filesize"] <= args.fsmax]
if args.remove_empty_caption:
assert "text" in data.columns
data = data[data["text"].str.len() > 0]
data = data[~data["text"].isna()]
if args.fmin is not None:
assert "num_frames" in data.columns
data = data[data["num_frames"] >= args.fmin]
if args.fmax is not None:
assert "num_frames" in data.columns
data = data[data["num_frames"] <= args.fmax]
if args.fpsmax is not None:
assert "fps" in data.columns
data = data[(data["fps"] <= args.fpsmax) | np.isnan(data["fps"])]
if args.hwmax is not None:
if "resolution" not in data.columns:
height = data["height"]
width = data["width"]
data["resolution"] = height * width
data = data[data["resolution"] <= args.hwmax]
if args.aesmin is not None:
assert "aes" in data.columns
data = data[data["aes"] >= args.aesmin]
if args.matchmin is not None:
assert "match" in data.columns
data = data[data["match"] >= args.matchmin]
if args.flowmin is not None:
assert "flow" in data.columns
data = data[data["flow"] >= args.flowmin]
if args.ocrmax is not None:
assert "ocr" in data.columns
data = data[data["ocr"] <= args.ocrmax]
if args.remove_text_duplication:
data = data.drop_duplicates(subset=["text"], keep="first")
if args.img_only:
data = data[data["path"].str.lower().str.endswith(IMG_EXTENSIONS)]
if args.vid_only:
data = data[~data["path"].str.lower().str.endswith(IMG_EXTENSIONS)]
if args.nospeech:
assert "speech" in data.columns
data = data[data["speech"] == 0]
# process data
if args.shuffle:
data = data.sample(frac=1).reset_index(drop=True) # shuffle
if args.head is not None:
data = data.head(args.head)
# train columns
if args.train_column:
all_columns = data.columns
columns_to_drop = all_columns.difference(TRAIN_COLUMNS)
data = data.drop(columns=columns_to_drop)
print(f"Filtered number of samples: {len(data)}.")
# shard data
if args.shard is not None:
sharded_data = np.array_split(data, args.shard)
for i in range(args.shard):
output_path_part = output_path.split(".")
output_path_s = ".".join(output_path_part[:-1]) + f"_{i}." + output_path_part[-1]
save_file(sharded_data[i], output_path_s)
print(f"Saved {len(sharded_data[i])} samples to {output_path_s}.")
else:
save_file(data, output_path)
print(f"Saved {len(data)} samples to {output_path}.")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, nargs="+", help="path to the input dataset")
parser.add_argument("--output", type=str, default=None, help="output path")
parser.add_argument("--format", type=str, default="csv", help="output format", choices=["csv", "parquet"])
parser.add_argument("--disable-parallel", action="store_true", help="disable parallel processing")
parser.add_argument("--num-workers", type=int, default=None, help="number of workers")
parser.add_argument("--seed", type=int, default=42, help="random seed")
# special case
parser.add_argument("--shard", type=int, default=None, help="shard the dataset")
parser.add_argument("--sort", type=str, default=None, help="sort by column")
parser.add_argument("--sort-ascending", type=str, default=None, help="sort by column (ascending order)")
parser.add_argument("--difference", type=str, default=None, help="get difference from the dataset")
parser.add_argument(
"--intersection", type=str, default=None, help="keep the paths in csv from the dataset and merge columns"
)
parser.add_argument("--train-column", action="store_true", help="only keep the train column")
# IO-related
parser.add_argument("--info", action="store_true", help="get the basic information of each video and image")
parser.add_argument("--video-info", action="store_true", help="get the basic information of each video")
parser.add_argument("--audio-info", action="store_true", help="get the basic information of each audio")
parser.add_argument("--ext", action="store_true", help="check if the file exists")
parser.add_argument(
"--load-caption", type=str, default=None, choices=["json", "txt"], help="load the caption from json or txt"
)
parser.add_argument("--uni-fps", type=int, default=None, help="unify video fps")
parser.add_argument("--extract-audio", action="store_true", help="extract and save audios from videos")
parser.add_argument("--trim-audio", type=float, default=None, help="trim audios for the first x seconds")
parser.add_argument("--trim", type=float, default=None, help="trim videos and audios for the first x seconds")
parser.add_argument("--crop-resize", type=int, nargs='+', default=None, help="crop and resize videos to fixed shapes (width, height)")
parser.add_argument("--resample-audio", action="store_true", help="resample audios to a specific Hz")
parser.add_argument("--audio-sr", type=int, default=None, help="pre-defined audio sample rate")
parser.add_argument("--dummy-video", action="store_true", help="set dummy videos for given audios")
parser.add_argument("--overwrite", action="store_true", help="overwrite data file")
parser.add_argument("--fix-video", action="store_true", help="fix video reading problem")
# path processing
parser.add_argument("--relpath", type=str, default=None, help="modify the path to relative path by root given")
parser.add_argument("--abspath", type=str, default=None, help="modify the path to absolute path by root given")
parser.add_argument("--path-to-id", action="store_true", help="add id based on path")
parser.add_argument(
"--path-subset", type=str, default=None, help="extract a subset data containing the given `path-subset` value"
)
parser.add_argument(
"--remove-empty-path",
action="store_true",
help="remove rows with empty path", # caused by transform, cannot read path
)
# caption filtering
parser.add_argument(
"--remove-empty-caption",
action="store_true",
help="remove rows with empty caption",
)
parser.add_argument("--remove-url", action="store_true", help="remove rows with url in caption")
parser.add_argument("--lang", type=str, default=None, help="remove rows with other language")
parser.add_argument("--remove-path-duplication", action="store_true", help="remove rows with duplicated path")
parser.add_argument("--remove-text-duplication", action="store_true", help="remove rows with duplicated caption")
# caption processing
parser.add_argument("--refine-llm-caption", action="store_true", help="modify the caption generated by LLM")
parser.add_argument(
"--clean-caption", action="store_true", help="modify the caption according to T5 pipeline to suit training"
)
parser.add_argument("--merge-cmotion", action="store_true", help="merge the camera motion to the caption")
parser.add_argument(
"--count-num-token", type=str, choices=["t5"], default=None, help="Count the number of tokens in the caption"
)
parser.add_argument("--append-text", type=str, default=None, help="append text to the caption")
parser.add_argument("--score-to-text", action="store_true", help="convert score to text")
parser.add_argument("--update-text", type=str, default=None, help="update the text with the given text")
# score filtering
parser.add_argument("--filesize", action="store_true", help="get the filesize of each video and image in MB")
parser.add_argument("--fsmax", type=int, default=None, help="filter the dataset by maximum filesize")
parser.add_argument("--fmin", type=int, default=None, help="filter the dataset by minimum number of frames")
parser.add_argument("--fmax", type=int, default=None, help="filter the dataset by maximum number of frames")
parser.add_argument("--hwmax", type=int, default=None, help="filter the dataset by maximum resolution")
parser.add_argument("--aesmin", type=float, default=None, help="filter the dataset by minimum aes score")
parser.add_argument("--matchmin", type=float, default=None, help="filter the dataset by minimum match score")
parser.add_argument("--flowmin", type=float, default=None, help="filter the dataset by minimum flow score")
parser.add_argument("--fpsmax", type=float, default=None, help="filter the dataset by maximum fps")
parser.add_argument("--img-only", action="store_true", help="only keep the image data")
parser.add_argument("--vid-only", action="store_true", help="only keep the video data")
parser.add_argument("--ocrmax", type=int, default=None, help="filter the dataset by maximum orc score")
parser.add_argument("--nospeech", action="store_true", help="filter the dataset by speech detection results")
# data processing
parser.add_argument("--shuffle", default=False, action="store_true", help="shuffle the dataset")
parser.add_argument("--head", type=int, default=None, help="return the first n rows of data")
return parser.parse_args()
def get_output_path(args, input_name):
if args.output is not None:
return args.output
name = input_name
dir_path = os.path.dirname(args.input[0])
# sort
if args.sort is not None:
assert args.sort_ascending is None
name += "_sort"
if args.sort_ascending is not None:
assert args.sort is None
name += "_sort"
# IO-related
# for IO-related, the function must be wrapped in try-except
if args.info:
name += "_info"
if args.video_info:
name += "_vinfo"
if args.audio_info:
name += "_ainfo"
if args.ext:
name += "_ext"
if args.load_caption:
name += f"_load{args.load_caption}"
if args.uni_fps is not None:
name += f"_fps{args.uni_fps}"
if args.extract_audio:
name += "_au"
if args.audio_sr is not None:
name += f"_sr{args.audio_sr}"
if args.trim_audio is not None:
name += f"_trim{args.trim_audio}s"
if args.trim is not None:
name += f"_trim{args.trim}s"
if args.crop_resize is not None:
name += f"_crop_resize{args.crop_resize[0]}x{args.crop_resize[1]}"
if args.resample_audio:
assert args.audio_sr is not None
name += f"_sr{args.audio_sr}"
if args.dummy_video:
name += f"_dummy_videos"
if args.fix_video:
name += f"_videofix"
# path processing
if args.relpath is not None:
name += "_relpath"
if args.abspath is not None:
name += "_abspath"
if args.remove_empty_path:
name += "_noemptypath"
# caption filtering
if args.remove_empty_caption:
name += "_noempty"
if args.remove_url:
name += "_nourl"
if args.lang is not None:
name += f"_{args.lang}"
if args.remove_path_duplication:
name += "_noduppath"
if args.remove_text_duplication:
name += "_noduptext"
if args.path_subset:
name += "_subset"
# caption processing
if args.refine_llm_caption:
name += "_llm"
if args.clean_caption:
name += "_clean"
if args.merge_cmotion:
name += "_cmcaption"
if args.count_num_token:
name += "_ntoken"
if args.append_text is not None:
name += "_appendtext"
if args.score_to_text:
name += "_score2text"
if args.update_text is not None:
name += "_update"
# score filtering
if args.filesize:
name += "_filesize"
if args.fsmax is not None:
name += f"_fsmax{args.fsmax}"
if args.fmin is not None:
name += f"_fmin{args.fmin}"
if args.fmax is not None:
name += f"_fmax{args.fmax}"
if args.fpsmax is not None:
name += f"_fpsmax{args.fpsmax}"
if args.hwmax is not None:
name += f"_hwmax{args.hwmax}"
if args.aesmin is not None:
name += f"_aesmin{args.aesmin}"
if args.matchmin is not None:
name += f"_matchmin{args.matchmin}"
if args.flowmin is not None:
name += f"_flowmin{args.flowmin}"
if args.ocrmax is not None:
name += f"_ocrmax{args.ocrmax}"
if args.img_only:
name += "_img"
if args.vid_only:
name += "_vid"
if args.nospeech:
name += "_nospeech"
# processing
if args.shuffle:
name += f"_shuffled_seed{args.seed}"
if args.head is not None:
name += f"_first_{args.head}_data"
output_path = os.path.join(dir_path, f"{name}.{args.format}")
return output_path
if __name__ == "__main__":
args = parse_args()
if args.disable_parallel:
PANDA_USE_PARALLEL = False
if PANDA_USE_PARALLEL:
if args.num_workers is not None:
pandarallel.initialize(nb_workers=args.num_workers, progress_bar=True)
else:
pandarallel.initialize(progress_bar=True)
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
main(args)