File size: 43,760 Bytes
e490e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
import argparse
import html
import json
import os
import random
import re
from functools import partial
from glob import glob
import subprocess
import soundfile as sf
import librosa
from pydub.utils import mediainfo

import cv2
import numpy as np
import pandas as pd
from PIL import Image
from tqdm import tqdm
import torchvision.transforms as T
from torchvision.io import write_video

from javisdit.datasets.read_video import read_video
from javisdit.datasets.read_audio import read_audio

from .utils import IMG_EXTENSIONS

tqdm.pandas()

try:
    from pandarallel import pandarallel

    PANDA_USE_PARALLEL = True
except ImportError:
    PANDA_USE_PARALLEL = False


def apply(df, func, **kwargs):
    if PANDA_USE_PARALLEL:
        return df.parallel_apply(func, **kwargs)
    return df.progress_apply(func, **kwargs)


TRAIN_COLUMNS = ["path", "text", "num_frames", "fps", "height", "width", "aspect_ratio", "resolution", "text_len"]

# ======================================================
# --info
# ======================================================


def get_video_length(cap, method="header"):
    assert method in ["header", "set"]
    if method == "header":
        length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    else:
        cap.set(cv2.CAP_PROP_POS_AVI_RATIO, 1)
        length = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
    return length


def get_info_old(path):
    try:
        ext = os.path.splitext(path)[1].lower()
        if ext in IMG_EXTENSIONS:
            im = cv2.imread(path)
            if im is None:
                return 0, 0, 0, np.nan, np.nan, np.nan
            height, width = im.shape[:2]
            num_frames, fps = 1, np.nan
        else:
            cap = cv2.VideoCapture(path)
            num_frames, height, width, fps = (
                get_video_length(cap, method="header"),
                int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
                int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                float(cap.get(cv2.CAP_PROP_FPS)),
            )
        hw = height * width
        aspect_ratio = height / width if width > 0 else np.nan
        return num_frames, height, width, aspect_ratio, fps, hw
    except:
        return 0, 0, 0, np.nan, np.nan, np.nan


def get_info(path):
    try:
        ext = os.path.splitext(path)[1].lower()
        if ext in IMG_EXTENSIONS:
            return get_image_info(path)
        else:
            return get_video_info(path)
    except:
        return 0, 0, 0, np.nan, np.nan, np.nan


def get_image_info(path, backend="pillow"):
    if backend == "pillow":
        try:
            with open(path, "rb") as f:
                img = Image.open(f)
                img = img.convert("RGB")
            width, height = img.size
            num_frames, fps = 1, np.nan
            hw = height * width
            aspect_ratio = height / width if width > 0 else np.nan
            return num_frames, height, width, aspect_ratio, fps, hw
        except:
            return 0, 0, 0, np.nan, np.nan, np.nan
    elif backend == "cv2":
        try:
            im = cv2.imread(path)
            if im is None:
                return 0, 0, 0, np.nan, np.nan, np.nan
            height, width = im.shape[:2]
            num_frames, fps = 1, np.nan
            hw = height * width
            aspect_ratio = height / width if width > 0 else np.nan
            return num_frames, height, width, aspect_ratio, fps, hw
        except:
            return 0, 0, 0, np.nan, np.nan, np.nan
    else:
        raise ValueError


def get_video_info(path, backend="cv2"):
    if backend == "torchvision":
        try:
            vframes, infos = read_video(path)
            num_frames, height, width = vframes.shape[0], vframes.shape[2], vframes.shape[3]
            if "video_fps" in infos:
                fps = infos["video_fps"]
            else:
                fps = np.nan
            hw = height * width
            aspect_ratio = height / width if width > 0 else np.nan
            return num_frames, height, width, aspect_ratio, fps, hw
        except:
            return 0, 0, 0, np.nan, np.nan, np.nan
    elif backend == "cv2":
        try:
            cap = cv2.VideoCapture(path)
            num_frames, height, width, fps = (
                get_video_length(cap, method="set"),
                int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
                int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                float(round(cap.get(cv2.CAP_PROP_FPS))),
            )
            hw = height * width
            aspect_ratio = height / width if width > 0 else np.nan
            return num_frames, height, width, aspect_ratio, fps, hw
        except:
            return 0, 0, 0, np.nan, np.nan, np.nan
    else:
        raise ValueError


def get_audio_info(audio_path, backend="pydub"):
    if backend == "pydub":
        try:
            info = mediainfo(audio_path)
            duration = float(info['duration'])  # seconds
            sample_rate = int(info['sample_rate'])  # Hz
            channels = int(info['channels'])  # channels
            return duration, sample_rate, channels
        except:
            return 0, 0, 0
    else:
        raise ValueError


# ======================================================
# --refine-llm-caption
# ======================================================

LLAVA_PREFIX = [
    "The video shows",
    "The video captures",
    "The video features",
    "The video depicts",
    "The video presents",
    "The video features",
    "The video is ",
    "In the video,",
    "The image shows",
    "The image captures",
    "The image features",
    "The image depicts",
    "The image presents",
    "The image features",
    "The image is ",
    "The image portrays",
    "In the image,",
]


def remove_caption_prefix(caption):
    for prefix in LLAVA_PREFIX:
        if caption.startswith(prefix) or caption.startswith(prefix.lower()):
            caption = caption[len(prefix) :].strip()
            if caption[0].islower():
                caption = caption[0].upper() + caption[1:]
            return caption
    return caption


# ======================================================
# --merge-cmotion
# ======================================================

CMOTION_TEXT = {
    "static": "static",
    "pan_right": "pan right",
    "pan_left": "pan left",
    "zoom_in": "zoom in",
    "zoom_out": "zoom out",
    "tilt_up": "tilt up",
    "tilt_down": "tilt down",
    # "pan/tilt": "The camera is panning.",
    # "dynamic": "The camera is moving.",
    # "unknown": None,
}
CMOTION_PROBS = {
    # hard-coded probabilities
    "static": 1.0,
    "zoom_in": 1.0,
    "zoom_out": 1.0,
    "pan_left": 1.0,
    "pan_right": 1.0,
    "tilt_up": 1.0,
    "tilt_down": 1.0,
    # "dynamic": 1.0,
    # "unknown": 0.0,
    # "pan/tilt": 1.0,
}


def merge_cmotion(caption, cmotion):
    text = CMOTION_TEXT[cmotion]
    prob = CMOTION_PROBS[cmotion]
    if text is not None and random.random() < prob:
        caption = f"{caption} Camera motion: {text}."
    return caption


# ======================================================
# --lang
# ======================================================


def build_lang_detector(lang_to_detect):
    from lingua import Language, LanguageDetectorBuilder

    lang_dict = dict(en=Language.ENGLISH)
    assert lang_to_detect in lang_dict
    valid_lang = lang_dict[lang_to_detect]
    detector = LanguageDetectorBuilder.from_all_spoken_languages().with_low_accuracy_mode().build()

    def detect_lang(caption):
        confidence_values = detector.compute_language_confidence_values(caption)
        confidence = [x.language for x in confidence_values[:5]]
        if valid_lang not in confidence:
            return False
        return True

    return detect_lang


# ======================================================
# --clean-caption
# ======================================================


def basic_clean(text):
    import ftfy

    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


BAD_PUNCT_REGEX = re.compile(
    r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
)  # noqa


def clean_caption(caption):
    import urllib.parse as ul

    from bs4 import BeautifulSoup

    caption = str(caption)
    caption = ul.unquote_plus(caption)
    caption = caption.strip().lower()
    caption = re.sub("<person>", "person", caption)
    # urls:
    caption = re.sub(
        r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
        "",
        caption,
    )  # regex for urls
    caption = re.sub(
        r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
        "",
        caption,
    )  # regex for urls
    # html:
    caption = BeautifulSoup(caption, features="html.parser").text

    # @<nickname>
    caption = re.sub(r"@[\w\d]+\b", "", caption)

    # 31C0—31EF CJK Strokes
    # 31F0—31FF Katakana Phonetic Extensions
    # 3200—32FF Enclosed CJK Letters and Months
    # 3300—33FF CJK Compatibility
    # 3400—4DBF CJK Unified Ideographs Extension A
    # 4DC0—4DFF Yijing Hexagram Symbols
    # 4E00—9FFF CJK Unified Ideographs
    caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
    caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
    caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
    caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
    caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
    caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
    caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
    #######################################################

    # все виды тире / all types of dash --> "-"
    caption = re.sub(
        r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
        "-",
        caption,
    )

    # кавычки к одному стандарту
    caption = re.sub(r"[`´«»“”¨]", '"', caption)
    caption = re.sub(r"[‘’]", "'", caption)

    # &quot;
    caption = re.sub(r"&quot;?", "", caption)
    # &amp
    caption = re.sub(r"&amp", "", caption)

    # ip adresses:
    caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

    # article ids:
    caption = re.sub(r"\d:\d\d\s+$", "", caption)

    # \n
    caption = re.sub(r"\\n", " ", caption)

    # "#123"
    caption = re.sub(r"#\d{1,3}\b", "", caption)
    # "#12345.."
    caption = re.sub(r"#\d{5,}\b", "", caption)
    # "123456.."
    caption = re.sub(r"\b\d{6,}\b", "", caption)
    # filenames:
    caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)

    #
    caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
    caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

    caption = re.sub(BAD_PUNCT_REGEX, r" ", caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
    caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

    # this-is-my-cute-cat / this_is_my_cute_cat
    regex2 = re.compile(r"(?:\-|\_)")
    if len(re.findall(regex2, caption)) > 3:
        caption = re.sub(regex2, " ", caption)

    caption = basic_clean(caption)

    caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
    caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
    caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

    caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
    caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
    caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
    caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
    caption = re.sub(r"\bpage\s+\d+\b", "", caption)

    caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption)  # j2d1a2a...

    caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

    caption = re.sub(r"\b\s+\:\s+", r": ", caption)
    caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
    caption = re.sub(r"\s+", " ", caption)

    caption.strip()

    caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
    caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
    caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
    caption = re.sub(r"^\.\S+$", "", caption)

    return caption.strip()


def text_preprocessing(text, use_text_preprocessing: bool = True):
    if use_text_preprocessing:
        # The exact text cleaning as was in the training stage:
        text = clean_caption(text)
        text = clean_caption(text)
        return text
    else:
        return text.lower().strip()


# ======================================================
# load caption
# ======================================================


def load_caption(path, ext):
    try:
        assert ext in ["json"]
        json_path = '.'.join(path.split(".")[:-1]) + ".json"
        with open(json_path, "r") as f:
            data = json.load(f)
        caption = data["caption"]
        return caption
    except:
        return ""


# ======================================================
# --clean-caption
# ======================================================

DROP_SCORE_PROB = 0.2


def score_to_text(data):
    text = data["text"]
    scores = []
    # aesthetic
    if "aes" in data:
        aes = data["aes"]
        if random.random() > DROP_SCORE_PROB:
            score_text = f"aesthetic score: {aes:.1f}"
            scores.append(score_text)
    if "flow" in data:
        flow = data["flow"]
        if random.random() > DROP_SCORE_PROB:
            score_text = f"motion score: {flow:.1f}"
            scores.append(score_text)
    if len(scores) > 0:
        text = f"{text} [{', '.join(scores)}]"
    return text


# ======================================================
# read & write
# ======================================================


def read_file(input_path):
    if input_path.endswith(".csv"):
        return pd.read_csv(input_path)
    elif input_path.endswith(".parquet"):
        return pd.read_parquet(input_path)
    else:
        raise NotImplementedError(f"Unsupported file format: {input_path}")


def save_file(data, output_path):
    output_dir = os.path.dirname(output_path)
    if not os.path.exists(output_dir) and output_dir != "":
        os.makedirs(output_dir)
    if output_path.endswith(".csv"):
        return data.to_csv(output_path, index=False)
    elif output_path.endswith(".parquet"):
        return data.to_parquet(output_path, index=False)
    else:
        raise NotImplementedError(f"Unsupported file format: {output_path}")


def read_data(input_paths):
    data = []
    input_name = ""
    input_list = []
    for input_path in input_paths:
        input_list.extend(glob(input_path))
    print("Input files:", input_list)
    for i, input_path in enumerate(input_list):
        if not os.path.exists(input_path):
            continue
        data.append(read_file(input_path))
        input_name += os.path.splitext(os.path.basename(input_path))[0]
        if i != len(input_list) - 1:
            input_name += "+"
        print(f"Loaded {len(data[-1])} samples from '{input_path}'.")
    if len(data) == 0:
        print(f"No samples to process. Exit.")
        exit()
    data = pd.concat(data, ignore_index=True, sort=False)
    print(f"Total number of samples: {len(data)}")
    return data, input_name


def unify_fps(input_path, dst_fps, overwrite=True):
    src_fps = get_video_info(input_path)[-2]
    if src_fps != dst_fps:
        ext = os.path.splitext(input_path)[1].lower()
        output_path = input_path.replace(ext, f'_fps{dst_fps}' + ext)
        ffmpeg_command = [
            "ffmpeg",
            "-y", 
            "-i", input_path,
            "-r", f"{dst_fps}",
            output_path
        ]
        result = subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
        if result.returncode == 0:
            if overwrite:
                os.rename(output_path, input_path)
            else:
                input_path = output_path

            src_fps = dst_fps
        else:
            print(result.stderr)

    num_frames = get_video_info(input_path, backend='torchvision')[0]
    return input_path, src_fps, num_frames


def extract_audio(input_path, dst_sr=16000, backend='ffmpeg'):
    ext = os.path.splitext(input_path)[1]
    save_path = input_path.replace(ext, '.wav')
    audio_id = os.path.splitext(os.path.basename(save_path))[0]

    if os.path.exists(save_path):
        try:
            audio, ainfo = read_audio(save_path, backend='sf')
            assert len(audio) > 0
            sr = int(ainfo['audio_fps'])
            if dst_sr is not None:
                assert sr == dst_sr
            return save_path, audio_id, sr
        except:
            pass
    
    if backend == 'torch':
        audio, ainfo = read_audio(input_path, backend='torch')
        audio = audio.numpy()
        sr = int(ainfo['audio_fps'])
        if sr != dst_sr:
            audio = librosa.resample(audio, orig_sr=sr, target_sr=dst_sr)
            sr = dst_sr
        sf.write(save_path, audio, sr)
    else:
        ffmpeg_command = [
            "ffmpeg",
            "-i", input_path,
            "-f", "wav"
        ]
        if dst_sr is not None:
            ffmpeg_command.extend(["-ar", f"{dst_sr}"])
        ffmpeg_command.append(save_path)
        result = subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
        sr = dst_sr
    
    return save_path, audio_id, sr


def trim_audio(input_path, max_sec):
    result = subprocess.run(
        ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", input_path],
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE,
        text=True
    )
    try:
        duration = float(result.stdout.strip())
    except:
        return 0

    if duration > max_sec:
        ext = os.path.splitext(input_path)[1]
        temp_path = input_path.replace(ext, '_tmp' + ext)
        subprocess.run([
            "ffmpeg", "-i", input_path, "-t", str(max_sec), temp_path, "-y"
        ], check=True)
        subprocess.run(["mv", temp_path, input_path], check=True)
        duration = max_sec
    return duration


def trim_video(input_path, max_sec):
    vinfo = get_video_info(input_path, backend='torchvision')
    num_frames, fps = vinfo[0], vinfo[-2]

    duration = num_frames / fps

    if duration > max_sec:
        ext = os.path.splitext(input_path)[1]
        temp_path = input_path.replace(ext, '_tmp' + ext)
        subprocess.run([
            "ffmpeg", "-i", input_path, "-t", str(max_sec), temp_path, "-y"
        ], check=True)
        subprocess.run(["mv", temp_path, input_path], check=True)
        duration = max_sec
        num_frames = get_video_info(input_path, backend='torchvision')[0]

    return num_frames


def resample_audio(input_path, dst_sr=16000):
    try:
        audio, ainfo = read_audio(input_path, backend='sf')
        src_sr = int(ainfo['audio_fps'])
        if src_sr == dst_sr:
            return src_sr
        audio = audio.cpu().numpy()
        audio = librosa.resample(audio, orig_sr=src_sr, target_sr=dst_sr)
        sf.write(input_path, audio, dst_sr)
        return dst_sr
    except:
        return 0


def set_dummy_video(input_path):
    result = subprocess.run(
        ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", input_path],
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE,
        text=True
    )
    try:
        duration = float(result.stdout.strip())
    except:
        duration = 0
    
    path, relpath = ['placeholder.mp4'] * 2
    _id = 'placeholder'
    fps = 24
    num_frames = int(duration * fps)
    height, width, aspect_ratio, resolution = 720, 1280, 0.5625, 921600
    text = 'placeholder'
    speech = -1
    return path, _id, relpath, num_frames, \
            height, width, aspect_ratio, fps, resolution,\
            speech, text


def video_crop_resize(input_path, target_wh):
    """
    Resize and crop a video to the target width and height while maintaining as much original information as possible.
    
    Args:
        input_path (str): Path to the input video.
        output_path (str): Path to save the processed video.
        target_wh (tuple): Target width and height as (width, height).
    """
    # Target dimensions
    dst_w, dst_h = target_wh
    dst_as = dst_w / dst_h
    resizer = T.Resize((dst_h, dst_w))
    dst_res = dst_w * dst_h
    
    # Read video and get metadata
    video, vinfo = read_video(input_path, backend='av')
    fps = int(round(vinfo['video_fps']))
    _, _, H, W = video.shape  # Frames, Channels, Height, Width
    
    # Determine crop dimensions for 16:9 ratio
    if W / H > dst_as:  # Wider than 16:9
        new_width = int(round(H * dst_as))
        new_height = H
        x_crop = (W - new_width) // 2
        y_crop = 0
    else:  # Taller or equal to 16:9
        new_width = W
        new_height = int(round(W / dst_as))
        x_crop = 0
        y_crop = (H - new_height) // 2
    
    # Perform crop and resize
    cropped_video = video[:, :, y_crop:y_crop+new_height, x_crop:x_crop+new_width]
    resized_video = resizer(cropped_video).permute(0, 2, 3, 1)
    
    # Save processed video
    ext = os.path.splitext(input_path)[-1]
    audio_path = input_path.replace(ext, '.wav')
    audio, ainfo = read_audio(audio_path, backend='sf')
    audio_fps = int(ainfo['audio_fps'])
    if audio is not None and len(audio.shape) == 1:
        audio = audio[None].repeat(2, 1)
    temp_path = input_path.replace(ext, '_tmp'+ext)
    write_video(temp_path, resized_video, fps=fps, video_codec="h264",
                audio_array=audio, audio_fps=audio_fps, audio_codec='aac')
    subprocess.run(["mv", temp_path, input_path], check=True)

    return dst_w, dst_h, dst_as, dst_res


def fix_video(input_path):
    cap = cv2.VideoCapture(input_path)
    if get_video_length(cap, 'header') != get_video_length(cap, 'set'):
        ext = os.path.splitext(input_path)[-1]
        cache_path = input_path.replace(ext, f'_fix{ext}')
        ffmpeg_command = [
            "ffmpeg",
            "-i", input_path,
            "-c:v", "libx264",
            "-c:a", "aac",
            "-crf", "18" ,
            "-preset", "veryfast",
            "-y", cache_path
        ]
        result = subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
        os.rename(cache_path, input_path)
        print('fixed:', input_path)
    cap.release()

    num_frames, _, _, _, fps, _ = get_video_info(input_path)
    
    return num_frames, fps


# ======================================================
# main
# ======================================================
# To add a new method, register it in the main, parse_args, and get_output_path functions, and update the doc at /tools/datasets/README.md#documentation


def main(args):
    # reading data
    data, input_name = read_data(args.input)

    # make difference
    if args.difference is not None:
        data_diff = pd.read_csv(args.difference)
        print(f"Difference csv contains {len(data_diff)} samples.")
        data = data[~data["path"].isin(data_diff["path"])]
        input_name += f"-{os.path.basename(args.difference).split('.')[0]}"
        print(f"Filtered number of samples: {len(data)}.")

    # make intersection
    if args.intersection is not None:
        data_new = pd.read_csv(args.intersection)
        print(f"Intersection csv contains {len(data_new)} samples.")
        cols_to_use = data_new.columns.difference(data.columns)

        col_on = "path"
        # if 'id' in data.columns and 'id' in data_new.columns:
        #     col_on = 'id'
        cols_to_use = cols_to_use.insert(0, col_on)
        data = pd.merge(data, data_new[cols_to_use], on=col_on, how="inner")
        print(f"Intersection number of samples: {len(data)}.")

    # get output path
    output_path = get_output_path(args, input_name)

    # preparation
    if args.lang is not None:
        detect_lang = build_lang_detector(args.lang)
    if args.count_num_token == "t5":
        from transformers import AutoTokenizer

        tokenizer = AutoTokenizer.from_pretrained("DeepFloyd/t5-v1_1-xxl")

    # IO-related
    if args.load_caption is not None:
        assert "path" in data.columns
        data["text"] = apply(data["path"], load_caption, ext=args.load_caption)
    if args.info:
        info = apply(data["path"], get_info)
        (
            data["num_frames"],
            data["height"],
            data["width"],
            data["aspect_ratio"],
            data["fps"],
            data["resolution"],
        ) = zip(*info)
    if args.video_info:
        info = apply(data["path"], get_video_info)
        (
            data["num_frames"],
            data["height"],
            data["width"],
            data["aspect_ratio"],
            data["fps"],
            data["resolution"],
        ) = zip(*info)
    if args.audio_info:
        info = apply(data["audio_path"], get_audio_info)
        (
            data["audio_length_s"],
            data["audio_fps"],
            data["audio_channels"],
        ) = zip(*info)
    if args.ext:
        assert "path" in data.columns
        data = data[apply(data["path"], os.path.exists)]
    if args.uni_fps is not None:
        info = apply(data["path"], unify_fps, dst_fps=args.uni_fps, overwrite=args.overwrite)
        data["path"], data["fps"], data["num_frames"] = zip(*info)
    if args.extract_audio:
        info = apply(data["path"], extract_audio, dst_sr=args.audio_sr)
        data["audio_path"], data['audio_id'], data["audio_fps"] = zip(*info)
    if args.trim_audio:
        duration = apply(data["audio_path"], trim_audio, max_sec=args.trim_audio)
        data = data[np.array(duration) > 0]
    if args.trim:
        data['num_frames'] = apply(data["path"], trim_video, max_sec=args.trim)
        audio_duration = apply(data["audio_path"], trim_audio, max_sec=args.trim)
        data = data[np.array(audio_duration) > 0]
    if args.crop_resize:
        assert len(args.crop_resize) == 2
        info = apply(data["path"], video_crop_resize, target_wh=args.crop_resize)
        data['width'], data['height'], data['aspect_ratio'], data['resolution'] = zip(*info)
    if args.resample_audio:
        data["audio_fps"] = apply(data["audio_path"], resample_audio, dst_sr=args.audio_sr)
        data = data[data["audio_fps"] == args.audio_sr]
    if args.dummy_video:
        info = apply(data["audio_path"], set_dummy_video)
        path, _id, relpath, num_frames, height, width, aspect_ratio, \
            fps, resolution, speech, text = zip(*info)
        data = {'path': path, 'id': _id, 'relpath': relpath, 'num_frames': num_frames,
                'height': height, 'width': width, 'aspect_ratio': aspect_ratio,
                'fps': fps, 'resolution': resolution, 
                'audio_path': data['audio_path'], 'audio_fps': data['audio_fps'],
                'speech': speech, 'text': text, 'audio_text': data['audio_text']}
        data = pd.DataFrame(data)
    if args.fix_video:
        info = apply(data["path"], fix_video)
        data["num_frames"], data['fps'] = zip(*info)

    # filtering
    if args.remove_url:
        assert "text" in data.columns
        data = data[~data["text"].str.contains(r"(?P<url>https?://[^\s]+)", regex=True)]
    if args.lang is not None:
        assert "text" in data.columns
        data = data[data["text"].progress_apply(detect_lang)]  # cannot parallelize
    if args.remove_empty_path:
        assert "path" in data.columns
        data = data[data["path"].str.len() > 0]
        data = data[~data["path"].isna()]
    if args.remove_empty_caption:
        assert "text" in data.columns
        data = data[data["text"].str.len() > 0]
        data = data[~data["text"].isna()]
    if args.remove_path_duplication:
        assert "path" in data.columns
        data = data.drop_duplicates(subset=["path"])
    if args.path_subset:
        data = data[data["path"].str.contains(args.path_subset)]

    # processing
    if args.relpath is not None:
        data["path"] = apply(data["path"], lambda x: os.path.relpath(x, args.relpath))
    if args.abspath is not None:
        data["path"] = apply(data["path"], lambda x: os.path.join(args.abspath, x))
    if args.path_to_id:
        data["id"] = apply(data["path"], lambda x: os.path.splitext(os.path.basename(x))[0])
    if args.merge_cmotion:
        data["text"] = apply(data, lambda x: merge_cmotion(x["text"], x["cmotion"]), axis=1)
    if args.refine_llm_caption:
        assert "text" in data.columns
        data["text"] = apply(data["text"], remove_caption_prefix)
    if args.append_text is not None:
        assert "text" in data.columns
        data["text"] = data["text"] + args.append_text
    if args.score_to_text:
        data["text"] = apply(data, score_to_text, axis=1)
    if args.clean_caption:
        assert "text" in data.columns
        data["text"] = apply(
            data["text"],
            partial(text_preprocessing, use_text_preprocessing=True),
        )
    if args.count_num_token is not None:
        assert "text" in data.columns
        data["text_len"] = apply(data["text"], lambda x: len(tokenizer(x)["input_ids"]))
    if args.update_text is not None:
        data_new = pd.read_csv(args.update_text)
        num_updated = data.path.isin(data_new.path).sum()
        print(f"Number of updated samples: {num_updated}.")
        data = data.set_index("path")
        data_new = data_new[["path", "text"]].set_index("path")
        data.update(data_new)
        data = data.reset_index()

    # sort
    if args.sort is not None:
        data = data.sort_values(by=args.sort, ascending=False)
    if args.sort_ascending is not None:
        data = data.sort_values(by=args.sort_ascending, ascending=True)

    # filtering
    if args.filesize:
        assert "path" in data.columns
        data["filesize"] = apply(data["path"], lambda x: os.stat(x).st_size / 1024 / 1024)
    if args.fsmax is not None:
        assert "filesize" in data.columns
        data = data[data["filesize"] <= args.fsmax]
    if args.remove_empty_caption:
        assert "text" in data.columns
        data = data[data["text"].str.len() > 0]
        data = data[~data["text"].isna()]
    if args.fmin is not None:
        assert "num_frames" in data.columns
        data = data[data["num_frames"] >= args.fmin]
    if args.fmax is not None:
        assert "num_frames" in data.columns
        data = data[data["num_frames"] <= args.fmax]
    if args.fpsmax is not None:
        assert "fps" in data.columns
        data = data[(data["fps"] <= args.fpsmax) | np.isnan(data["fps"])]
    if args.hwmax is not None:
        if "resolution" not in data.columns:
            height = data["height"]
            width = data["width"]
            data["resolution"] = height * width
        data = data[data["resolution"] <= args.hwmax]
    if args.aesmin is not None:
        assert "aes" in data.columns
        data = data[data["aes"] >= args.aesmin]
    if args.matchmin is not None:
        assert "match" in data.columns
        data = data[data["match"] >= args.matchmin]
    if args.flowmin is not None:
        assert "flow" in data.columns
        data = data[data["flow"] >= args.flowmin]
    if args.ocrmax is not None:
        assert "ocr" in data.columns
        data = data[data["ocr"] <= args.ocrmax]
    if args.remove_text_duplication:
        data = data.drop_duplicates(subset=["text"], keep="first")
    if args.img_only:
        data = data[data["path"].str.lower().str.endswith(IMG_EXTENSIONS)]
    if args.vid_only:
        data = data[~data["path"].str.lower().str.endswith(IMG_EXTENSIONS)]
    if args.nospeech:
        assert "speech" in data.columns
        data = data[data["speech"] == 0]

    # process data
    if args.shuffle:
        data = data.sample(frac=1).reset_index(drop=True)  # shuffle
    if args.head is not None:
        data = data.head(args.head)

    # train columns
    if args.train_column:
        all_columns = data.columns
        columns_to_drop = all_columns.difference(TRAIN_COLUMNS)
        data = data.drop(columns=columns_to_drop)

    print(f"Filtered number of samples: {len(data)}.")

    # shard data
    if args.shard is not None:
        sharded_data = np.array_split(data, args.shard)
        for i in range(args.shard):
            output_path_part = output_path.split(".")
            output_path_s = ".".join(output_path_part[:-1]) + f"_{i}." + output_path_part[-1]
            save_file(sharded_data[i], output_path_s)
            print(f"Saved {len(sharded_data[i])} samples to {output_path_s}.")
    else:
        save_file(data, output_path)
        print(f"Saved {len(data)} samples to {output_path}.")


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("input", type=str, nargs="+", help="path to the input dataset")
    parser.add_argument("--output", type=str, default=None, help="output path")
    parser.add_argument("--format", type=str, default="csv", help="output format", choices=["csv", "parquet"])
    parser.add_argument("--disable-parallel", action="store_true", help="disable parallel processing")
    parser.add_argument("--num-workers", type=int, default=None, help="number of workers")
    parser.add_argument("--seed", type=int, default=42, help="random seed")

    # special case
    parser.add_argument("--shard", type=int, default=None, help="shard the dataset")
    parser.add_argument("--sort", type=str, default=None, help="sort by column")
    parser.add_argument("--sort-ascending", type=str, default=None, help="sort by column (ascending order)")
    parser.add_argument("--difference", type=str, default=None, help="get difference from the dataset")
    parser.add_argument(
        "--intersection", type=str, default=None, help="keep the paths in csv from the dataset and merge columns"
    )
    parser.add_argument("--train-column", action="store_true", help="only keep the train column")

    # IO-related
    parser.add_argument("--info", action="store_true", help="get the basic information of each video and image")
    parser.add_argument("--video-info", action="store_true", help="get the basic information of each video")
    parser.add_argument("--audio-info", action="store_true", help="get the basic information of each audio")
    parser.add_argument("--ext", action="store_true", help="check if the file exists")
    parser.add_argument(
        "--load-caption", type=str, default=None, choices=["json", "txt"], help="load the caption from json or txt"
    )
    parser.add_argument("--uni-fps", type=int, default=None, help="unify video fps")
    parser.add_argument("--extract-audio", action="store_true", help="extract and save audios from videos")
    parser.add_argument("--trim-audio", type=float, default=None, help="trim audios for the first x seconds")
    parser.add_argument("--trim", type=float, default=None, help="trim videos and audios for the first x seconds")
    parser.add_argument("--crop-resize", type=int, nargs='+', default=None, help="crop and resize videos to fixed shapes (width, height)")
    parser.add_argument("--resample-audio", action="store_true", help="resample audios to a specific Hz")
    parser.add_argument("--audio-sr", type=int, default=None, help="pre-defined audio sample rate")
    parser.add_argument("--dummy-video", action="store_true", help="set dummy videos for given audios")
    parser.add_argument("--overwrite", action="store_true", help="overwrite data file")
    parser.add_argument("--fix-video", action="store_true", help="fix video reading problem")

    # path processing
    parser.add_argument("--relpath", type=str, default=None, help="modify the path to relative path by root given")
    parser.add_argument("--abspath", type=str, default=None, help="modify the path to absolute path by root given")
    parser.add_argument("--path-to-id", action="store_true", help="add id based on path")
    parser.add_argument(
        "--path-subset", type=str, default=None, help="extract a subset data containing the given `path-subset` value"
    )
    parser.add_argument(
        "--remove-empty-path",
        action="store_true",
        help="remove rows with empty path",  # caused by transform, cannot read path
    )

    # caption filtering
    parser.add_argument(
        "--remove-empty-caption",
        action="store_true",
        help="remove rows with empty caption",
    )
    parser.add_argument("--remove-url", action="store_true", help="remove rows with url in caption")
    parser.add_argument("--lang", type=str, default=None, help="remove rows with other language")
    parser.add_argument("--remove-path-duplication", action="store_true", help="remove rows with duplicated path")
    parser.add_argument("--remove-text-duplication", action="store_true", help="remove rows with duplicated caption")

    # caption processing
    parser.add_argument("--refine-llm-caption", action="store_true", help="modify the caption generated by LLM")
    parser.add_argument(
        "--clean-caption", action="store_true", help="modify the caption according to T5 pipeline to suit training"
    )
    parser.add_argument("--merge-cmotion", action="store_true", help="merge the camera motion to the caption")
    parser.add_argument(
        "--count-num-token", type=str, choices=["t5"], default=None, help="Count the number of tokens in the caption"
    )
    parser.add_argument("--append-text", type=str, default=None, help="append text to the caption")
    parser.add_argument("--score-to-text", action="store_true", help="convert score to text")
    parser.add_argument("--update-text", type=str, default=None, help="update the text with the given text")

    # score filtering
    parser.add_argument("--filesize", action="store_true", help="get the filesize of each video and image in MB")
    parser.add_argument("--fsmax", type=int, default=None, help="filter the dataset by maximum filesize")
    parser.add_argument("--fmin", type=int, default=None, help="filter the dataset by minimum number of frames")
    parser.add_argument("--fmax", type=int, default=None, help="filter the dataset by maximum number of frames")
    parser.add_argument("--hwmax", type=int, default=None, help="filter the dataset by maximum resolution")
    parser.add_argument("--aesmin", type=float, default=None, help="filter the dataset by minimum aes score")
    parser.add_argument("--matchmin", type=float, default=None, help="filter the dataset by minimum match score")
    parser.add_argument("--flowmin", type=float, default=None, help="filter the dataset by minimum flow score")
    parser.add_argument("--fpsmax", type=float, default=None, help="filter the dataset by maximum fps")
    parser.add_argument("--img-only", action="store_true", help="only keep the image data")
    parser.add_argument("--vid-only", action="store_true", help="only keep the video data")
    parser.add_argument("--ocrmax", type=int, default=None, help="filter the dataset by maximum orc score")
    parser.add_argument("--nospeech", action="store_true", help="filter the dataset by speech detection results")

    # data processing
    parser.add_argument("--shuffle", default=False, action="store_true", help="shuffle the dataset")
    parser.add_argument("--head", type=int, default=None, help="return the first n rows of data")

    return parser.parse_args()


def get_output_path(args, input_name):
    if args.output is not None:
        return args.output
    name = input_name
    dir_path = os.path.dirname(args.input[0])

    # sort
    if args.sort is not None:
        assert args.sort_ascending is None
        name += "_sort"
    if args.sort_ascending is not None:
        assert args.sort is None
        name += "_sort"

    # IO-related
    # for IO-related, the function must be wrapped in try-except
    if args.info:
        name += "_info"
    if args.video_info:
        name += "_vinfo"
    if args.audio_info:
        name += "_ainfo"
    if args.ext:
        name += "_ext"
    if args.load_caption:
        name += f"_load{args.load_caption}"
    if args.uni_fps is not None:
        name += f"_fps{args.uni_fps}"
    if args.extract_audio:
        name += "_au"
        if args.audio_sr is not None:
            name += f"_sr{args.audio_sr}"
    if args.trim_audio is not None:
        name += f"_trim{args.trim_audio}s"
    if args.trim is not None:
        name += f"_trim{args.trim}s"
    if args.crop_resize is not None:
        name += f"_crop_resize{args.crop_resize[0]}x{args.crop_resize[1]}"
    if args.resample_audio:
        assert args.audio_sr is not None
        name += f"_sr{args.audio_sr}"
    if args.dummy_video:
        name += f"_dummy_videos"
    if args.fix_video:
        name += f"_videofix"

    # path processing
    if args.relpath is not None:
        name += "_relpath"
    if args.abspath is not None:
        name += "_abspath"
    if args.remove_empty_path:
        name += "_noemptypath"

    # caption filtering
    if args.remove_empty_caption:
        name += "_noempty"
    if args.remove_url:
        name += "_nourl"
    if args.lang is not None:
        name += f"_{args.lang}"
    if args.remove_path_duplication:
        name += "_noduppath"
    if args.remove_text_duplication:
        name += "_noduptext"
    if args.path_subset:
        name += "_subset"

    # caption processing
    if args.refine_llm_caption:
        name += "_llm"
    if args.clean_caption:
        name += "_clean"
    if args.merge_cmotion:
        name += "_cmcaption"
    if args.count_num_token:
        name += "_ntoken"
    if args.append_text is not None:
        name += "_appendtext"
    if args.score_to_text:
        name += "_score2text"
    if args.update_text is not None:
        name += "_update"

    # score filtering
    if args.filesize:
        name += "_filesize"
    if args.fsmax is not None:
        name += f"_fsmax{args.fsmax}"
    if args.fmin is not None:
        name += f"_fmin{args.fmin}"
    if args.fmax is not None:
        name += f"_fmax{args.fmax}"
    if args.fpsmax is not None:
        name += f"_fpsmax{args.fpsmax}"
    if args.hwmax is not None:
        name += f"_hwmax{args.hwmax}"
    if args.aesmin is not None:
        name += f"_aesmin{args.aesmin}"
    if args.matchmin is not None:
        name += f"_matchmin{args.matchmin}"
    if args.flowmin is not None:
        name += f"_flowmin{args.flowmin}"
    if args.ocrmax is not None:
        name += f"_ocrmax{args.ocrmax}"
    if args.img_only:
        name += "_img"
    if args.vid_only:
        name += "_vid"
    if args.nospeech:
        name += "_nospeech"

    # processing
    if args.shuffle:
        name += f"_shuffled_seed{args.seed}"
    if args.head is not None:
        name += f"_first_{args.head}_data"

    output_path = os.path.join(dir_path, f"{name}.{args.format}")
    return output_path


if __name__ == "__main__":
    args = parse_args()
    if args.disable_parallel:
        PANDA_USE_PARALLEL = False
    if PANDA_USE_PARALLEL:
        if args.num_workers is not None:
            pandarallel.initialize(nb_workers=args.num_workers, progress_bar=True)
        else:
            pandarallel.initialize(progress_bar=True)
    if args.seed is not None:
        random.seed(args.seed)
        np.random.seed(args.seed)
    main(args)