subject
stringlengths 20
185
| predicate
stringclasses 53
values | object
stringlengths 1
508
| object_type
stringclasses 3
values | object_datatype
stringclasses 1
value | object_language
stringclasses 1
value |
|---|---|---|---|---|---|
https://en-word.net/id/oewn-00353817-s
|
https://globalwordnet.github.io/schemas/wn#similar
|
https://en-word.net/id/oewn-00353228-a
|
uri
| null | null |
https://en-word.net/id/oewn-00409737-a
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db17727
|
blank_node
| null | null |
ndb6c05ae842b42a8ae1cae4ddee2198db19469
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
|
he came off second-best
|
literal
| null |
en
|
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/snuggling#snuggling-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Navy_SEAL#Navy_SEAL-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/boskopoid#boskopoid-a
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/G.I.#G.I.-v
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/loather#loather-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/order_Opuntiales#order_Opuntiales-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/chewing#chewing-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Mary_Queen_of_Scots#Mary_Queen_of_Scots-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/dappled-grey#dappled-grey-n
|
uri
| null | null |
https://en-word.net/id/oewn-00349300-a
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
|
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
|
uri
| null | null |
https://en-word.net/id/oewn-00324097-s
|
https://globalwordnet.github.io/schemas/wn#partOfSpeech
|
https://globalwordnet.github.io/schemas/wn#adjective_satellite
|
uri
| null | null |
https://en-word.net/id/oewn-00339240-r
|
https://globalwordnet.github.io/schemas/wn#definition
|
ndb6c05ae842b42a8ae1cae4ddee2198db14829
|
blank_node
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/oxynervonic_acid#oxynervonic_acid-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/weightlift#weightlift-v
|
uri
| null | null |
https://en-word.net/id/oewn-00422644-v
|
https://globalwordnet.github.io/schemas/wn#ili
|
http://globalwordnet.org/ili/i23834
|
uri
| null | null |
https://en-word.net/id/oewn-00270700-n
|
https://globalwordnet.github.io/schemas/wn#hypernym
|
https://en-word.net/id/oewn-00270102-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/white_lead#white_lead-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Salix_purpurea#Salix_purpurea-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/condylar#condylar-a
|
uri
| null | null |
ndb6c05ae842b42a8ae1cae4ddee2198db16456
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
|
of brown tinged with hazel
|
literal
| null |
en
|
ndb6c05ae842b42a8ae1cae4ddee2198db4073
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
|
he took a course in lifesaving
|
literal
| null |
en
|
https://en-word.net/id/oewn-00422440-n
|
https://globalwordnet.github.io/schemas/wn#hyponym
|
https://en-word.net/id/oewn-00423837-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/presuppose#presuppose-v
|
uri
| null | null |
https://en-word.net/id/oewn-00034685-s
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
|
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
|
uri
| null | null |
https://en-word.net/id/oewn-00035642-r
|
http://purl.org/dc/terms/subject
|
adv.all
|
literal
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Crab#Crab-n
|
uri
| null | null |
https://en-word.net/id/oewn-00098271-v
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db4239
|
blank_node
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Camembert#Camembert-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/bun_divider#bun_divider-n
|
uri
| null | null |
https://en-word.net/id/oewn-00242413-r
|
https://globalwordnet.github.io/schemas/wn#definition
|
ndb6c05ae842b42a8ae1cae4ddee2198db10646
|
blank_node
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/mortifying#mortifying-s
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Egretta_caerulea#Egretta_caerulea-n
|
uri
| null | null |
ndb6c05ae842b42a8ae1cae4ddee2198db11418
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
|
inflict damage upon
|
literal
| null |
en
|
https://en-word.net/id/oewn-00086690-s
|
https://globalwordnet.github.io/schemas/wn#ili
|
http://globalwordnet.org/ili/i453
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/piroshki#piroshki-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/audio_system#audio_system-n
|
uri
| null | null |
https://en-word.net/id/oewn-00388211-r
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
|
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/recitative#recitative-n
|
uri
| null | null |
https://en-word.net/id/oewn-00067445-r
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db2839
|
blank_node
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/loosen#loosen-v
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Caranx_crysos#Caranx_crysos-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/round_shot#round_shot-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/cay#cay-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/nightmare#nightmare-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/acid-base_balance#acid-base_balance-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/northernmost#northernmost-s
|
uri
| null | null |
https://en-word.net/id/oewn-00081836-r
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db3494
|
blank_node
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/low-sodium_diet#low-sodium_diet-n
|
uri
| null | null |
https://en-word.net/id/oewn-00026546-r
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db1033
|
blank_node
| null | null |
https://en-word.net/id/oewn-00397038-s
|
https://globalwordnet.github.io/schemas/wn#ili
|
http://globalwordnet.org/ili/i2233
|
uri
| null | null |
https://en-word.net/id/oewn-00287084-n
|
https://globalwordnet.github.io/schemas/wn#definition
|
ndb6c05ae842b42a8ae1cae4ddee2198db12613
|
blank_node
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/sentence_structure#sentence_structure-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Passer_domesticus#Passer_domesticus-n
|
uri
| null | null |
https://en-word.net/id/oewn-00032087-a
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db1250
|
blank_node
| null | null |
https://en-word.net/id/oewn-00219478-r
|
https://globalwordnet.github.io/schemas/wn#definition
|
ndb6c05ae842b42a8ae1cae4ddee2198db9601
|
blank_node
| null | null |
https://en-word.net/id/oewn-00370095-v
|
http://www.w3.org/2004/02/skos/core#inScheme
|
https://en-word.net/
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/ammonia_water#ammonia_water-n
|
uri
| null | null |
https://en-word.net/id/oewn-00195256-v
|
https://globalwordnet.github.io/schemas/wn#hypernym
|
https://en-word.net/id/oewn-00195686-v
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/wordy#wordy-s
|
uri
| null | null |
https://en-word.net/id/oewn-00063834-n
|
https://globalwordnet.github.io/schemas/wn#partOfSpeech
|
https://globalwordnet.github.io/schemas/wn#noun
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/crystalline#crystalline-s
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/out#out-r
|
uri
| null | null |
https://en-word.net/id/oewn-00299938-n
|
https://globalwordnet.github.io/schemas/wn#ili
|
http://globalwordnet.org/ili/i36972
|
uri
| null | null |
https://en-word.net/id/oewn-00088039-a
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db3766
|
blank_node
| null | null |
https://en-word.net/id/oewn-00286014-a
|
http://www.w3.org/2004/02/skos/core#inScheme
|
https://en-word.net/
|
uri
| null | null |
https://en-word.net/id/oewn-00433834-r
|
https://globalwordnet.github.io/schemas/wn#definition
|
ndb6c05ae842b42a8ae1cae4ddee2198db18793
|
blank_node
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/jauntiness#jauntiness-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/order_Corrodentia#order_Corrodentia-n
|
uri
| null | null |
https://en-word.net/id/oewn-00096402-v
|
http://www.w3.org/2004/02/skos/core#inScheme
|
https://en-word.net/
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Ctenocephalides#Ctenocephalides-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/William_Henry_Mauldin#William_Henry_Mauldin-n
|
uri
| null | null |
https://en-word.net/id/oewn-00355803-s
|
http://purl.org/dc/terms/subject
|
adj.all
|
literal
| null | null |
https://en-word.net/id/oewn-00379335-v
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
|
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Xinjiang_Uighur_Autonomous_Region#Xinjiang_Uighur_Autonomous_Region-n
|
uri
| null | null |
https://en-word.net/id/oewn-00325361-v
|
https://globalwordnet.github.io/schemas/wn#partOfSpeech
|
https://globalwordnet.github.io/schemas/wn#verb
|
uri
| null | null |
https://en-word.net/id/oewn-00442014-r
|
https://globalwordnet.github.io/schemas/wn#ili
|
http://globalwordnet.org/ili/i21171
|
uri
| null | null |
https://en-word.net/id/oewn-00407299-r
|
https://globalwordnet.github.io/schemas/wn#partOfSpeech
|
https://globalwordnet.github.io/schemas/wn#adverb
|
uri
| null | null |
https://en-word.net/id/oewn-00402267-n
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
|
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/benevolent#benevolent-a
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/cell_division#cell_division-n
|
uri
| null | null |
https://en-word.net/id/oewn-00219829-v
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db9612
|
blank_node
| null | null |
https://en-word.net/id/oewn-00211755-r
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
|
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
|
uri
| null | null |
https://en-word.net/id/oewn-00385677-s
|
https://globalwordnet.github.io/schemas/wn#partOfSpeech
|
https://globalwordnet.github.io/schemas/wn#adjective_satellite
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Edward_Vernon_Rickenbacker#Edward_Vernon_Rickenbacker-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/angiotensin_I#angiotensin_I-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/genus_Kohleria#genus_Kohleria-n
|
uri
| null | null |
https://en-word.net/id/oewn-00009997-a
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db339
|
blank_node
| null | null |
https://en-word.net/id/oewn-00139437-a
|
http://www.w3.org/2004/02/skos/core#inScheme
|
https://en-word.net/
|
uri
| null | null |
https://en-word.net/id/oewn-00302637-v
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db13291
|
blank_node
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/split_second#split_second-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/Sphagnales#Sphagnales-n
|
uri
| null | null |
https://en-word.net/
|
http://www.w3.org/ns/lemon/lime#entry
|
https://en-word.net/lemma/selective_service#selective_service-n
|
uri
| null | null |
ndb6c05ae842b42a8ae1cae4ddee2198db1016
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
|
become tense, nervous, or uneasy
|
literal
| null |
en
|
ndb6c05ae842b42a8ae1cae4ddee2198db9642
|
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
|
make sure the gear is engaged
|
literal
| null |
en
|
https://en-word.net/id/oewn-00420921-n
|
https://globalwordnet.github.io/schemas/wn#ili
|
http://globalwordnet.org/ili/i37611
|
uri
| null | null |
https://en-word.net/id/oewn-00015706-v
|
http://www.w3.org/2004/02/skos/core#inScheme
|
https://en-word.net/
|
uri
| null | null |
https://en-word.net/id/oewn-00300556-s
|
https://globalwordnet.github.io/schemas/wn#example
|
ndb6c05ae842b42a8ae1cae4ddee2198db13194
|
blank_node
| null | null |
WordNet RDF
Dataset Description
Lexical database of semantic relations between words (English WordNet 2024)
Original Source: https://en-word.net/static/english-wordnet-2024.ttl.gz
Dataset Summary
This dataset contains RDF triples from WordNet RDF converted to HuggingFace dataset format for easy use in machine learning pipelines.
- Format: Originally turtle, converted to HuggingFace Dataset
- Size: 0.21 GB (extracted)
- Entities: ~120K synsets
- Triples: ~2M
- Original License: CC BY 4.0
Recommended Use
Quick validation, linguistic relationships, small-scale testing
Notes: Compressed download, automatic extraction. English WordNet 2024 from en-word.net
Dataset Format: Lossless RDF Representation
This dataset uses a standard lossless format for representing RDF (Resource Description Framework) data in HuggingFace Datasets. All semantic information from the original RDF knowledge graph is preserved, enabling perfect round-trip conversion between RDF and HuggingFace formats.
Schema
Each RDF triple is represented as a row with 6 fields:
| Field | Type | Description | Example |
|---|---|---|---|
subject |
string | Subject of the triple (URI or blank node) | "http://schema.org/Person" |
predicate |
string | Predicate URI | "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" |
object |
string | Object of the triple | "John Doe" or "http://schema.org/Thing" |
object_type |
string | Type of object: "uri", "literal", or "blank_node" |
"literal" |
object_datatype |
string | XSD datatype URI (for typed literals) | "http://www.w3.org/2001/XMLSchema#integer" |
object_language |
string | Language tag (for language-tagged literals) | "en" |
Example: RDF Triple Representation
Original RDF (Turtle):
<http://example.org/John> <http://schema.org/name> "John Doe"@en .
HuggingFace Dataset Row:
{
"subject": "http://example.org/John",
"predicate": "http://schema.org/name",
"object": "John Doe",
"object_type": "literal",
"object_datatype": None,
"object_language": "en"
}
Loading the Dataset
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("CleverThis/wordnet")
# Access the data
data = dataset["data"]
# Iterate over triples
for row in data:
subject = row["subject"]
predicate = row["predicate"]
obj = row["object"]
obj_type = row["object_type"]
print(f"Triple: ({subject}, {predicate}, {obj})")
print(f" Object type: {obj_type}")
if row["object_language"]:
print(f" Language: {row['object_language']}")
if row["object_datatype"]:
print(f" Datatype: {row['object_datatype']}")
Converting Back to RDF
The dataset can be converted back to any RDF format (Turtle, N-Triples, RDF/XML, etc.) with zero information loss:
from datasets import load_dataset
from rdflib import Graph, URIRef, Literal, BNode
def convert_to_rdf(dataset_name, output_file="output.ttl", split="data"):
"""Convert HuggingFace dataset back to RDF Turtle format."""
# Load dataset
dataset = load_dataset(dataset_name)
# Create RDF graph
graph = Graph()
# Convert each row to RDF triple
for row in dataset[split]:
# Subject
if row["subject"].startswith("_:"):
subject = BNode(row["subject"][2:])
else:
subject = URIRef(row["subject"])
# Predicate (always URI)
predicate = URIRef(row["predicate"])
# Object (depends on object_type)
if row["object_type"] == "uri":
obj = URIRef(row["object"])
elif row["object_type"] == "blank_node":
obj = BNode(row["object"][2:])
elif row["object_type"] == "literal":
if row["object_datatype"]:
obj = Literal(row["object"], datatype=URIRef(row["object_datatype"]))
elif row["object_language"]:
obj = Literal(row["object"], lang=row["object_language"])
else:
obj = Literal(row["object"])
graph.add((subject, predicate, obj))
# Serialize to Turtle (or any RDF format)
graph.serialize(output_file, format="turtle")
print(f"Exported {len(graph)} triples to {output_file}")
return graph
# Usage
graph = convert_to_rdf("CleverThis/wordnet", "reconstructed.ttl")
Information Preservation Guarantee
This format preserves 100% of RDF information:
- ✅ URIs: Exact string representation preserved
- ✅ Literals: Full text content preserved
- ✅ Datatypes: XSD and custom datatypes preserved
(e.g.,
xsd:integer,xsd:dateTime) - ✅ Language Tags: BCP 47 language tags preserved (e.g.,
@en,@fr,@ja) - ✅ Blank Nodes: Node structure preserved (identifiers may change but graph isomorphism maintained)
Round-trip guarantee: Original RDF → HuggingFace → Reconstructed RDF produces semantically identical graphs.
Querying the Dataset
You can filter and query the dataset like any HuggingFace dataset:
from datasets import load_dataset
dataset = load_dataset("CleverThis/wordnet")
# Find all triples with English literals
english_literals = dataset["data"].filter(
lambda x: x["object_type"] == "literal" and x["object_language"] == "en"
)
print(f"Found {len(english_literals)} English literals")
# Find all rdf:type statements
type_statements = dataset["data"].filter(
lambda x: "rdf-syntax-ns#type" in x["predicate"]
)
print(f"Found {len(type_statements)} type statements")
# Convert to Pandas for analysis
import pandas as pd
df = dataset["data"].to_pandas()
# Analyze predicate distribution
print(df["predicate"].value_counts())
Dataset Format
The dataset contains all triples in a single data split, suitable for machine learning tasks such as:
- Knowledge graph completion
- Link prediction
- Entity embedding
- Relation extraction
- Graph neural networks
Format Specification
For complete technical documentation of the RDF-to-HuggingFace format, see:
📖 RDF to HuggingFace Format Specification
The specification includes:
- Detailed schema definition
- All RDF node type mappings
- Performance benchmarks
- Edge cases and limitations
- Complete code examples
Conversion Metadata
- Source Format: turtle
- Original Size: 0.21 GB
- Conversion Tool: CleverErnie RDF Pipeline
- Format Version: 1.0
- Conversion Date: 2025-12-24
Citation
If you use this dataset, please cite the original source:
Original Dataset: WordNet RDF URL: https://en-word.net/static/english-wordnet-2024.ttl.gz License: CC BY 4.0
Dataset Preparation
This dataset was prepared using the CleverErnie GISM framework:
# Download original dataset
python scripts/rdf_dataset_downloader.py wordnet -o datasets/
# Convert to HuggingFace format
python scripts/convert_rdf_to_hf_dataset_unified.py \
datasets/wordnet/[file] \
hf_datasets/wordnet \
--format turtle \
--strategy auto
# Upload to HuggingFace Hub
python scripts/upload_all_datasets.py --dataset wordnet
Additional Information
Original Source
https://en-word.net/static/english-wordnet-2024.ttl.gz
Conversion Details
- Converted using: CleverErnie GISM
- Conversion script:
scripts/convert_rdf_to_hf_dataset_unified.py - Dataset format: Single 'data' split with all triples
- Strategy: Auto-selected based on dataset size and format
Maintenance
This dataset is maintained by the CleverThis organization.
- Downloads last month
- 5