Dataset Viewer
Auto-converted to Parquet Duplicate
subject
stringlengths
20
185
predicate
stringclasses
53 values
object
stringlengths
1
508
object_type
stringclasses
3 values
object_datatype
stringclasses
1 value
object_language
stringclasses
1 value
https://en-word.net/id/oewn-00353817-s
https://globalwordnet.github.io/schemas/wn#similar
https://en-word.net/id/oewn-00353228-a
uri
null
null
https://en-word.net/id/oewn-00409737-a
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db17727
blank_node
null
null
ndb6c05ae842b42a8ae1cae4ddee2198db19469
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
he came off second-best
literal
null
en
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/snuggling#snuggling-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Navy_SEAL#Navy_SEAL-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/boskopoid#boskopoid-a
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/G.I.#G.I.-v
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/loather#loather-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/order_Opuntiales#order_Opuntiales-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/chewing#chewing-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Mary_Queen_of_Scots#Mary_Queen_of_Scots-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/dappled-grey#dappled-grey-n
uri
null
null
https://en-word.net/id/oewn-00349300-a
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
uri
null
null
https://en-word.net/id/oewn-00324097-s
https://globalwordnet.github.io/schemas/wn#partOfSpeech
https://globalwordnet.github.io/schemas/wn#adjective_satellite
uri
null
null
https://en-word.net/id/oewn-00339240-r
https://globalwordnet.github.io/schemas/wn#definition
ndb6c05ae842b42a8ae1cae4ddee2198db14829
blank_node
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/oxynervonic_acid#oxynervonic_acid-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/weightlift#weightlift-v
uri
null
null
https://en-word.net/id/oewn-00422644-v
https://globalwordnet.github.io/schemas/wn#ili
http://globalwordnet.org/ili/i23834
uri
null
null
https://en-word.net/id/oewn-00270700-n
https://globalwordnet.github.io/schemas/wn#hypernym
https://en-word.net/id/oewn-00270102-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/white_lead#white_lead-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Salix_purpurea#Salix_purpurea-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/condylar#condylar-a
uri
null
null
ndb6c05ae842b42a8ae1cae4ddee2198db16456
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
of brown tinged with hazel
literal
null
en
ndb6c05ae842b42a8ae1cae4ddee2198db4073
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
he took a course in lifesaving
literal
null
en
https://en-word.net/id/oewn-00422440-n
https://globalwordnet.github.io/schemas/wn#hyponym
https://en-word.net/id/oewn-00423837-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/presuppose#presuppose-v
uri
null
null
https://en-word.net/id/oewn-00034685-s
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
uri
null
null
https://en-word.net/id/oewn-00035642-r
http://purl.org/dc/terms/subject
adv.all
literal
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Crab#Crab-n
uri
null
null
https://en-word.net/id/oewn-00098271-v
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db4239
blank_node
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Camembert#Camembert-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/bun_divider#bun_divider-n
uri
null
null
https://en-word.net/id/oewn-00242413-r
https://globalwordnet.github.io/schemas/wn#definition
ndb6c05ae842b42a8ae1cae4ddee2198db10646
blank_node
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/mortifying#mortifying-s
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Egretta_caerulea#Egretta_caerulea-n
uri
null
null
ndb6c05ae842b42a8ae1cae4ddee2198db11418
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
inflict damage upon
literal
null
en
https://en-word.net/id/oewn-00086690-s
https://globalwordnet.github.io/schemas/wn#ili
http://globalwordnet.org/ili/i453
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/piroshki#piroshki-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/audio_system#audio_system-n
uri
null
null
https://en-word.net/id/oewn-00388211-r
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/recitative#recitative-n
uri
null
null
https://en-word.net/id/oewn-00067445-r
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db2839
blank_node
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/loosen#loosen-v
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Caranx_crysos#Caranx_crysos-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/round_shot#round_shot-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/cay#cay-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/nightmare#nightmare-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/acid-base_balance#acid-base_balance-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/northernmost#northernmost-s
uri
null
null
https://en-word.net/id/oewn-00081836-r
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db3494
blank_node
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/low-sodium_diet#low-sodium_diet-n
uri
null
null
https://en-word.net/id/oewn-00026546-r
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db1033
blank_node
null
null
https://en-word.net/id/oewn-00397038-s
https://globalwordnet.github.io/schemas/wn#ili
http://globalwordnet.org/ili/i2233
uri
null
null
https://en-word.net/id/oewn-00287084-n
https://globalwordnet.github.io/schemas/wn#definition
ndb6c05ae842b42a8ae1cae4ddee2198db12613
blank_node
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/sentence_structure#sentence_structure-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Passer_domesticus#Passer_domesticus-n
uri
null
null
https://en-word.net/id/oewn-00032087-a
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db1250
blank_node
null
null
https://en-word.net/id/oewn-00219478-r
https://globalwordnet.github.io/schemas/wn#definition
ndb6c05ae842b42a8ae1cae4ddee2198db9601
blank_node
null
null
https://en-word.net/id/oewn-00370095-v
http://www.w3.org/2004/02/skos/core#inScheme
https://en-word.net/
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/ammonia_water#ammonia_water-n
uri
null
null
https://en-word.net/id/oewn-00195256-v
https://globalwordnet.github.io/schemas/wn#hypernym
https://en-word.net/id/oewn-00195686-v
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/wordy#wordy-s
uri
null
null
https://en-word.net/id/oewn-00063834-n
https://globalwordnet.github.io/schemas/wn#partOfSpeech
https://globalwordnet.github.io/schemas/wn#noun
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/crystalline#crystalline-s
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/out#out-r
uri
null
null
https://en-word.net/id/oewn-00299938-n
https://globalwordnet.github.io/schemas/wn#ili
http://globalwordnet.org/ili/i36972
uri
null
null
https://en-word.net/id/oewn-00088039-a
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db3766
blank_node
null
null
https://en-word.net/id/oewn-00286014-a
http://www.w3.org/2004/02/skos/core#inScheme
https://en-word.net/
uri
null
null
https://en-word.net/id/oewn-00433834-r
https://globalwordnet.github.io/schemas/wn#definition
ndb6c05ae842b42a8ae1cae4ddee2198db18793
blank_node
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/jauntiness#jauntiness-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/order_Corrodentia#order_Corrodentia-n
uri
null
null
https://en-word.net/id/oewn-00096402-v
http://www.w3.org/2004/02/skos/core#inScheme
https://en-word.net/
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Ctenocephalides#Ctenocephalides-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/William_Henry_Mauldin#William_Henry_Mauldin-n
uri
null
null
https://en-word.net/id/oewn-00355803-s
http://purl.org/dc/terms/subject
adj.all
literal
null
null
https://en-word.net/id/oewn-00379335-v
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Xinjiang_Uighur_Autonomous_Region#Xinjiang_Uighur_Autonomous_Region-n
uri
null
null
https://en-word.net/id/oewn-00325361-v
https://globalwordnet.github.io/schemas/wn#partOfSpeech
https://globalwordnet.github.io/schemas/wn#verb
uri
null
null
https://en-word.net/id/oewn-00442014-r
https://globalwordnet.github.io/schemas/wn#ili
http://globalwordnet.org/ili/i21171
uri
null
null
https://en-word.net/id/oewn-00407299-r
https://globalwordnet.github.io/schemas/wn#partOfSpeech
https://globalwordnet.github.io/schemas/wn#adverb
uri
null
null
https://en-word.net/id/oewn-00402267-n
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/benevolent#benevolent-a
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/cell_division#cell_division-n
uri
null
null
https://en-word.net/id/oewn-00219829-v
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db9612
blank_node
null
null
https://en-word.net/id/oewn-00211755-r
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/ns/lemon/ontolex#LexicalConcept
uri
null
null
https://en-word.net/id/oewn-00385677-s
https://globalwordnet.github.io/schemas/wn#partOfSpeech
https://globalwordnet.github.io/schemas/wn#adjective_satellite
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Edward_Vernon_Rickenbacker#Edward_Vernon_Rickenbacker-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/angiotensin_I#angiotensin_I-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/genus_Kohleria#genus_Kohleria-n
uri
null
null
https://en-word.net/id/oewn-00009997-a
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db339
blank_node
null
null
https://en-word.net/id/oewn-00139437-a
http://www.w3.org/2004/02/skos/core#inScheme
https://en-word.net/
uri
null
null
https://en-word.net/id/oewn-00302637-v
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db13291
blank_node
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/split_second#split_second-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/Sphagnales#Sphagnales-n
uri
null
null
https://en-word.net/
http://www.w3.org/ns/lemon/lime#entry
https://en-word.net/lemma/selective_service#selective_service-n
uri
null
null
ndb6c05ae842b42a8ae1cae4ddee2198db1016
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
become tense, nervous, or uneasy
literal
null
en
ndb6c05ae842b42a8ae1cae4ddee2198db9642
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
make sure the gear is engaged
literal
null
en
https://en-word.net/id/oewn-00420921-n
https://globalwordnet.github.io/schemas/wn#ili
http://globalwordnet.org/ili/i37611
uri
null
null
https://en-word.net/id/oewn-00015706-v
http://www.w3.org/2004/02/skos/core#inScheme
https://en-word.net/
uri
null
null
https://en-word.net/id/oewn-00300556-s
https://globalwordnet.github.io/schemas/wn#example
ndb6c05ae842b42a8ae1cae4ddee2198db13194
blank_node
null
null
End of preview. Expand in Data Studio

WordNet RDF

Dataset Description

Lexical database of semantic relations between words (English WordNet 2024)

Original Source: https://en-word.net/static/english-wordnet-2024.ttl.gz

Dataset Summary

This dataset contains RDF triples from WordNet RDF converted to HuggingFace dataset format for easy use in machine learning pipelines.

  • Format: Originally turtle, converted to HuggingFace Dataset
  • Size: 0.21 GB (extracted)
  • Entities: ~120K synsets
  • Triples: ~2M
  • Original License: CC BY 4.0

Recommended Use

Quick validation, linguistic relationships, small-scale testing

Notes: Compressed download, automatic extraction. English WordNet 2024 from en-word.net

Dataset Format: Lossless RDF Representation

This dataset uses a standard lossless format for representing RDF (Resource Description Framework) data in HuggingFace Datasets. All semantic information from the original RDF knowledge graph is preserved, enabling perfect round-trip conversion between RDF and HuggingFace formats.

Schema

Each RDF triple is represented as a row with 6 fields:

Field Type Description Example
subject string Subject of the triple (URI or blank node) "http://schema.org/Person"
predicate string Predicate URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"
object string Object of the triple "John Doe" or "http://schema.org/Thing"
object_type string Type of object: "uri", "literal", or "blank_node" "literal"
object_datatype string XSD datatype URI (for typed literals) "http://www.w3.org/2001/XMLSchema#integer"
object_language string Language tag (for language-tagged literals) "en"

Example: RDF Triple Representation

Original RDF (Turtle):

<http://example.org/John> <http://schema.org/name> "John Doe"@en .

HuggingFace Dataset Row:

{
  "subject": "http://example.org/John",
  "predicate": "http://schema.org/name",
  "object": "John Doe",
  "object_type": "literal",
  "object_datatype": None,
  "object_language": "en"
}

Loading the Dataset

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("CleverThis/wordnet")

# Access the data
data = dataset["data"]

# Iterate over triples
for row in data:
    subject = row["subject"]
    predicate = row["predicate"]
    obj = row["object"]
    obj_type = row["object_type"]

    print(f"Triple: ({subject}, {predicate}, {obj})")
    print(f"  Object type: {obj_type}")
    if row["object_language"]:
        print(f"  Language: {row['object_language']}")
    if row["object_datatype"]:
        print(f"  Datatype: {row['object_datatype']}")

Converting Back to RDF

The dataset can be converted back to any RDF format (Turtle, N-Triples, RDF/XML, etc.) with zero information loss:

from datasets import load_dataset
from rdflib import Graph, URIRef, Literal, BNode

def convert_to_rdf(dataset_name, output_file="output.ttl", split="data"):
    """Convert HuggingFace dataset back to RDF Turtle format."""
    # Load dataset
    dataset = load_dataset(dataset_name)

    # Create RDF graph
    graph = Graph()

    # Convert each row to RDF triple
    for row in dataset[split]:
        # Subject
        if row["subject"].startswith("_:"):
            subject = BNode(row["subject"][2:])
        else:
            subject = URIRef(row["subject"])

        # Predicate (always URI)
        predicate = URIRef(row["predicate"])

        # Object (depends on object_type)
        if row["object_type"] == "uri":
            obj = URIRef(row["object"])
        elif row["object_type"] == "blank_node":
            obj = BNode(row["object"][2:])
        elif row["object_type"] == "literal":
            if row["object_datatype"]:
                obj = Literal(row["object"], datatype=URIRef(row["object_datatype"]))
            elif row["object_language"]:
                obj = Literal(row["object"], lang=row["object_language"])
            else:
                obj = Literal(row["object"])

        graph.add((subject, predicate, obj))

    # Serialize to Turtle (or any RDF format)
    graph.serialize(output_file, format="turtle")
    print(f"Exported {len(graph)} triples to {output_file}")
    return graph

# Usage
graph = convert_to_rdf("CleverThis/wordnet", "reconstructed.ttl")

Information Preservation Guarantee

This format preserves 100% of RDF information:

  • URIs: Exact string representation preserved
  • Literals: Full text content preserved
  • Datatypes: XSD and custom datatypes preserved (e.g., xsd:integer, xsd:dateTime)
  • Language Tags: BCP 47 language tags preserved (e.g., @en, @fr, @ja)
  • Blank Nodes: Node structure preserved (identifiers may change but graph isomorphism maintained)

Round-trip guarantee: Original RDF → HuggingFace → Reconstructed RDF produces semantically identical graphs.

Querying the Dataset

You can filter and query the dataset like any HuggingFace dataset:

from datasets import load_dataset

dataset = load_dataset("CleverThis/wordnet")

# Find all triples with English literals
english_literals = dataset["data"].filter(
    lambda x: x["object_type"] == "literal" and x["object_language"] == "en"
)
print(f"Found {len(english_literals)} English literals")

# Find all rdf:type statements
type_statements = dataset["data"].filter(
    lambda x: "rdf-syntax-ns#type" in x["predicate"]
)
print(f"Found {len(type_statements)} type statements")

# Convert to Pandas for analysis
import pandas as pd
df = dataset["data"].to_pandas()

# Analyze predicate distribution
print(df["predicate"].value_counts())

Dataset Format

The dataset contains all triples in a single data split, suitable for machine learning tasks such as:

  • Knowledge graph completion
  • Link prediction
  • Entity embedding
  • Relation extraction
  • Graph neural networks

Format Specification

For complete technical documentation of the RDF-to-HuggingFace format, see:

📖 RDF to HuggingFace Format Specification

The specification includes:

  • Detailed schema definition
  • All RDF node type mappings
  • Performance benchmarks
  • Edge cases and limitations
  • Complete code examples

Conversion Metadata

  • Source Format: turtle
  • Original Size: 0.21 GB
  • Conversion Tool: CleverErnie RDF Pipeline
  • Format Version: 1.0
  • Conversion Date: 2025-12-24

Citation

If you use this dataset, please cite the original source:

Original Dataset: WordNet RDF URL: https://en-word.net/static/english-wordnet-2024.ttl.gz License: CC BY 4.0

Dataset Preparation

This dataset was prepared using the CleverErnie GISM framework:

# Download original dataset
python scripts/rdf_dataset_downloader.py wordnet -o datasets/

# Convert to HuggingFace format
python scripts/convert_rdf_to_hf_dataset_unified.py \
    datasets/wordnet/[file] \
    hf_datasets/wordnet \
    --format turtle \
    --strategy auto

# Upload to HuggingFace Hub
python scripts/upload_all_datasets.py --dataset wordnet

Additional Information

Original Source

https://en-word.net/static/english-wordnet-2024.ttl.gz

Conversion Details

  • Converted using: CleverErnie GISM
  • Conversion script: scripts/convert_rdf_to_hf_dataset_unified.py
  • Dataset format: Single 'data' split with all triples
  • Strategy: Auto-selected based on dataset size and format

Maintenance

This dataset is maintained by the CleverThis organization.

Downloads last month
5