paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/deep-architectures-for-neural-machine
|
Deep Architectures for Neural Machine Translation
|
1707.07631
|
http://arxiv.org/abs/1707.07631v1
|
http://arxiv.org/pdf/1707.07631v1.pdf
|
https://github.com/Avmb/deep-nmt-architectures
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generalization-and-equilibrium-in-generative
|
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
|
1703.00573
|
http://arxiv.org/abs/1703.00573v5
|
http://arxiv.org/pdf/1703.00573v5.pdf
|
https://github.com/PrincetonML/MIX-plus-GANs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/neural-factorization-machines-for-sparse
|
Neural Factorization Machines for Sparse Predictive Analytics
|
1708.05027
|
http://arxiv.org/abs/1708.05027v1
|
http://arxiv.org/pdf/1708.05027v1.pdf
|
https://github.com/hexiangnan/neural_factorization_machine
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/how-intelligent-are-convolutional-neural
|
How intelligent are convolutional neural networks?
|
1709.06126
|
http://arxiv.org/abs/1709.06126v2
|
http://arxiv.org/pdf/1709.06126v2.pdf
|
https://github.com/zhennany/synthetic
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-a-rotation-invariant-detector-with
|
Learning a Rotation Invariant Detector with Rotatable Bounding Box
|
1711.09405
|
http://arxiv.org/abs/1711.09405v1
|
http://arxiv.org/pdf/1711.09405v1.pdf
|
https://github.com/liulei01/DRBox
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/denoising-adversarial-autoencoders
|
Denoising Adversarial Autoencoders
|
1703.01220
|
http://arxiv.org/abs/1703.01220v4
|
http://arxiv.org/pdf/1703.01220v4.pdf
|
https://github.com/ToniCreswell/DAAE_
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/texture-synthesis-with-recurrent-variational
|
Texture Synthesis with Recurrent Variational Auto-Encoder
|
1712.08838
|
http://arxiv.org/abs/1712.08838v1
|
http://arxiv.org/pdf/1712.08838v1.pdf
|
https://github.com/MoustafaMeshry/draw
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/toward-controlled-generation-of-text
|
Toward Controlled Generation of Text
|
1703.00955
|
http://arxiv.org/abs/1703.00955v4
|
http://arxiv.org/pdf/1703.00955v4.pdf
|
https://github.com/asyml/texar
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/deep-uq-learning-deep-neural-network
|
Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
|
1802.00850
|
http://arxiv.org/abs/1802.00850v1
|
http://arxiv.org/pdf/1802.00850v1.pdf
|
https://github.com/rohitkt10/deep-uq-paper
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/tensorflow-quantum-a-software-framework-for
|
TensorFlow Quantum: A Software Framework for Quantum Machine Learning
|
2003.02989
|
https://arxiv.org/abs/2003.02989v2
|
https://arxiv.org/pdf/2003.02989v2.pdf
|
https://github.com/tensorflow/quantum
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/action-segmentation-with-joint-self
|
Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation
|
2003.02824
|
https://arxiv.org/abs/2003.02824v3
|
https://arxiv.org/pdf/2003.02824v3.pdf
|
https://github.com/cmhungsteve/SSTDA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dancing-to-music
|
Dancing to Music
|
1911.02001
|
https://arxiv.org/abs/1911.02001v1
|
https://arxiv.org/pdf/1911.02001v1.pdf
|
https://github.com/NVlabs/Dance2Music
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-reinforcement-learning-control-of
|
Deep Reinforcement Learning Control of Quantum Cartpoles
|
1910.09200
|
https://arxiv.org/abs/1910.09200v4
|
https://arxiv.org/pdf/1910.09200v4.pdf
|
https://github.com/Z-T-WANG/DeepReinforcementLearningControlOfQuantumCartpoles
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/nonlinear-classifiers-for-ranking-problems
|
Nonlinear classifiers for ranking problems based on kernelized SVM
|
2002.11436
|
https://arxiv.org/abs/2002.11436v2
|
https://arxiv.org/pdf/2002.11436v2.pdf
|
https://github.com/VaclavMacha/ClassificationOnTop_new.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/weakly-and-semi-supervised-panoptic
|
Weakly- and Semi-Supervised Panoptic Segmentation
|
1808.03575
|
http://arxiv.org/abs/1808.03575v3
|
http://arxiv.org/pdf/1808.03575v3.pdf
|
https://github.com/qizhuli/Weakly-Supervised-Panoptic-Segmentation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/multi-task-self-supervised-learning-for-1
|
Multi-task self-supervised learning for Robust Speech Recognition
|
2001.09239
|
https://arxiv.org/abs/2001.09239v2
|
https://arxiv.org/pdf/2001.09239v2.pdf
|
https://github.com/santi-pdp/pase
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-model-to-search-for-synthesizable-molecules
|
A Model to Search for Synthesizable Molecules
|
1906.05221
|
https://arxiv.org/abs/1906.05221v2
|
https://arxiv.org/pdf/1906.05221v2.pdf
|
https://github.com/john-bradshaw/molecule-chef
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adversarial-policy-gradient-for-deep-learning
|
Adversarial Policy Gradient for Deep Learning Image Augmentation
|
1909.04108
|
https://arxiv.org/abs/1909.04108v1
|
https://arxiv.org/pdf/1909.04108v1.pdf
|
https://github.com/victorychain/Adversarial-Policy-Gradient-Augmentation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/improved-regularization-of-convolutional
|
Improved Regularization of Convolutional Neural Networks with Cutout
|
1708.04552
|
http://arxiv.org/abs/1708.04552v2
|
http://arxiv.org/pdf/1708.04552v2.pdf
|
https://github.com/uoguelph-mlrg/Cutout
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/real-time-vision-based-depth-reconstruction
|
Real-time Vision-based Depth Reconstruction with NVidia Jetson
|
1907.07210
|
https://arxiv.org/abs/1907.07210v1
|
https://arxiv.org/pdf/1907.07210v1.pdf
|
https://github.com/CnnDepth/tx2_fcnn_node
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-kernel-perspective-for-regularizing-deep
|
A Kernel Perspective for Regularizing Deep Neural Networks
|
1810.00363
|
https://arxiv.org/abs/1810.00363v4
|
https://arxiv.org/pdf/1810.00363v4.pdf
|
https://github.com/albietz/kernel_reg
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/query-guided-end-to-end-person-search
|
Query-guided End-to-End Person Search
|
1905.01203
|
https://arxiv.org/abs/1905.01203v1
|
https://arxiv.org/pdf/1905.01203v1.pdf
|
https://github.com/munjalbharti/Query-guided-End-to-End-Person-Search
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/r2cnn-multi-dimensional-attention-based
|
SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects
|
1811.07126
|
https://arxiv.org/abs/1811.07126v4
|
https://arxiv.org/pdf/1811.07126v4.pdf
|
https://github.com/DetectionTeamUCAS/R2CNN-Plus-Plus_Tensorflow
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/towards-query-efficient-black-box-attacks-an
|
Towards Query Efficient Black-box Attacks: An Input-free Perspective
|
1809.02918
|
http://arxiv.org/abs/1809.02918v1
|
http://arxiv.org/pdf/1809.02918v1.pdf
|
https://github.com/yalidu/input-free-attack
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/texar-a-modularized-versatile-and-extensible-1
|
Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
|
1809.00794
|
https://arxiv.org/abs/1809.00794v2
|
https://arxiv.org/pdf/1809.00794v2.pdf
|
https://github.com/asyml/texar
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/automatic-program-synthesis-of-long-programs
|
Automatic Program Synthesis of Long Programs with a Learned Garbage Collector
|
1809.04682
|
http://arxiv.org/abs/1809.04682v2
|
http://arxiv.org/pdf/1809.04682v2.pdf
|
https://github.com/amitz25/PCCoder
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/acquisition-of-localization-confidence-for
|
Acquisition of Localization Confidence for Accurate Object Detection
|
1807.11590
|
http://arxiv.org/abs/1807.11590v1
|
http://arxiv.org/pdf/1807.11590v1.pdf
|
https://github.com/vacancy/PreciseRoIPooling
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-repetition-code-of-15-qubits
|
A repetition code of 15 qubits
|
1709.00990
|
https://arxiv.org/abs/1709.00990v3
|
https://arxiv.org/pdf/1709.00990v3.pdf
|
https://github.com/decodoku/repetition_code
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/eddy-saturation-of-the-southern-ocean-a
|
Eddy saturation of the Southern Ocean: a baroclinic versus barotropic perspective
|
1906.08442
|
https://arxiv.org/abs/1906.08442v3
|
https://arxiv.org/pdf/1906.08442v3.pdf
|
https://github.com/navidcy/EddySaturation-MOM6
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/topic-modeling-with-wasserstein-autoencoders-1
|
Topic Modeling with Wasserstein Autoencoders
|
1907.12374
|
https://arxiv.org/abs/1907.12374v2
|
https://arxiv.org/pdf/1907.12374v2.pdf
|
https://github.com/awslabs/w-lda
| true
| true
| false
|
mxnet
|
https://paperswithcode.com/paper/neural-duplicate-question-detection-without-1
|
Neural Duplicate Question Detection without Labeled Training Data
|
1911.05594
|
https://arxiv.org/abs/1911.05594v2
|
https://arxiv.org/pdf/1911.05594v2.pdf
|
https://github.com/UKPLab/emnlp2019-duplicate_question_detection
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/neural-attribution-for-semantic-bug
|
Neural Attribution for Semantic Bug-Localization in Student Programs
| null |
http://papers.nips.cc/paper/9358-neural-attribution-for-semantic-bug-localization-in-student-programs
|
http://papers.nips.cc/paper/9358-neural-attribution-for-semantic-bug-localization-in-student-programs.pdf
|
https://bitbucket.org/iiscseal/nbl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/understanding-contrastive-representation-1
|
Understanding Contrastive Representation Learning through Geometry on the Hypersphere
| null |
https://proceedings.icml.cc/static/paper_files/icml/2020/5503-Paper.pdf
|
https://proceedings.icml.cc/static/paper_files/icml/2020/5503-Paper.pdf
|
https://github.com/SsnL/align_uniform
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/vision-based-dynamic-offside-line-marker-for
|
Vision Based Dynamic Offside Line Marker for Soccer Games
|
1804.06438
|
http://arxiv.org/abs/1804.06438v1
|
http://arxiv.org/pdf/1804.06438v1.pdf
|
https://github.com/surajkra/Offside_Tracker_EECS504
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/colors-in-context-a-pragmatic-neural-model
|
Colors in Context: A Pragmatic Neural Model for Grounded Language Understanding
|
1703.10186
|
http://arxiv.org/abs/1703.10186v2
|
http://arxiv.org/pdf/1703.10186v2.pdf
|
https://github.com/futurulus/colors-in-context
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/draw-a-recurrent-neural-network-for-image
|
DRAW: A Recurrent Neural Network For Image Generation
|
1502.04623
|
http://arxiv.org/abs/1502.04623v2
|
http://arxiv.org/pdf/1502.04623v2.pdf
|
https://github.com/MoustafaMeshry/draw
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/conceptnet-55-an-open-multilingual-graph-of
|
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
|
1612.03975
|
http://arxiv.org/abs/1612.03975v2
|
http://arxiv.org/pdf/1612.03975v2.pdf
|
https://github.com/LuminosoInsight/conceptnet-vector-ensemble
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/conceptnet-at-semeval-2017-task-2-extending
|
ConceptNet at SemEval-2017 Task 2: Extending Word Embeddings with Multilingual Relational Knowledge
|
1704.03560
|
http://arxiv.org/abs/1704.03560v2
|
http://arxiv.org/pdf/1704.03560v2.pdf
|
https://github.com/LuminosoInsight/conceptnet-vector-ensemble
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/incorporating-copying-mechanism-in-sequence
|
Incorporating Copying Mechanism in Sequence-to-Sequence Learning
|
1603.06393
|
http://arxiv.org/abs/1603.06393v3
|
http://arxiv.org/pdf/1603.06393v3.pdf
|
https://github.com/majumderb/sanskrit-ocr
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/transition-based-dependency-parsing-with-2
|
Transition-Based Dependency Parsing with Stack Long Short-Term Memory
|
1505.08075
|
http://arxiv.org/abs/1505.08075v1
|
http://arxiv.org/pdf/1505.08075v1.pdf
|
https://github.com/mstrise/dep2label
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deconvolutional-paragraph-representation
|
Deconvolutional Paragraph Representation Learning
|
1708.04729
|
http://arxiv.org/abs/1708.04729v3
|
http://arxiv.org/pdf/1708.04729v3.pdf
|
https://github.com/tuvuumass/SCoPE
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-hierarchical-neural-autoencoder-for
|
A Hierarchical Neural Autoencoder for Paragraphs and Documents
|
1506.01057
|
http://arxiv.org/abs/1506.01057v2
|
http://arxiv.org/pdf/1506.01057v2.pdf
|
https://github.com/tuvuumass/SCoPE
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/character-level-convolutional-networks-for
|
Character-level Convolutional Networks for Text Classification
|
1509.01626
|
http://arxiv.org/abs/1509.01626v3
|
http://arxiv.org/pdf/1509.01626v3.pdf
|
https://github.com/tuvuumass/SCoPE
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/191202288
|
Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning
|
1912.02288
|
https://arxiv.org/abs/1912.02288v2
|
https://arxiv.org/pdf/1912.02288v2.pdf
|
https://github.com/facebookresearch/Hanabi_SPARTA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/large-scale-visual-relationship-understanding
|
Large-Scale Visual Relationship Understanding
|
1804.10660
|
https://arxiv.org/abs/1804.10660v4
|
https://arxiv.org/pdf/1804.10660v4.pdf
|
https://github.com/facebookresearch/Large-Scale-VRD
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/solving-nonlinear-and-high-dimensional
|
Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning
|
1811.08782
|
https://arxiv.org/abs/1811.08782v1
|
https://arxiv.org/pdf/1811.08782v1.pdf
|
https://github.com/alialaradi/DeepGalerkinMethod
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/paired-open-ended-trailblazer-poet-endlessly
|
Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions
|
1901.01753
|
http://arxiv.org/abs/1901.01753v3
|
http://arxiv.org/pdf/1901.01753v3.pdf
|
https://github.com/uber-research/poet
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deepercut-a-deeper-stronger-and-faster-multi
|
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
|
1605.03170
|
http://arxiv.org/abs/1605.03170v3
|
http://arxiv.org/pdf/1605.03170v3.pdf
|
https://github.com/gyaansastra/DeepLab
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-learning-tools-for-the-measurement-of
|
Deep learning tools for the measurement of animal behavior in neuroscience
|
1909.13868
|
https://arxiv.org/abs/1909.13868v2
|
https://arxiv.org/pdf/1909.13868v2.pdf
|
https://github.com/gyaansastra/DeepLab
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/squeeze-excite-guided-few-shot-segmentation
|
'Squeeze & Excite' Guided Few-Shot Segmentation of Volumetric Images
|
1902.01314
|
https://arxiv.org/abs/1902.01314v2
|
https://arxiv.org/pdf/1902.01314v2.pdf
|
https://github.com/CSCYQJ/LOCATION-SENSITIVE-LOCAL-PROTOTYPE-NETWORK
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/large-covariance-estimation-by-thresholding
|
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
|
1201.0175
|
https://arxiv.org/abs/1201.0175v2
|
https://arxiv.org/pdf/1201.0175v2.pdf
|
https://github.com/brucewuquant/POET
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/model-of-spin-liquids-with-and-without-time
|
Model of spin liquids with and without time-reversal symmetry
|
1810.09858
|
https://arxiv.org/abs/1810.09858v1
|
https://arxiv.org/pdf/1810.09858v1.pdf
|
https://github.com/gonghour/DMRG_for_spin-ladder_systems
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/pannuke-dataset-extension-insights-and
|
PanNuke Dataset Extension, Insights and Baselines
|
2003.10778
|
https://arxiv.org/abs/2003.10778v7
|
https://arxiv.org/pdf/2003.10778v7.pdf
|
https://github.com/aaparna/UNet-Image-Segmentation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/safe-by-design-control-for-euler-lagrange
|
Safe-by-Design Control for Euler-Lagrange Systems
|
2009.03767
|
https://arxiv.org/abs/2009.03767v2
|
https://arxiv.org/pdf/2009.03767v2.pdf
|
https://github.com/shawcortez/safe-control-euler-lagrange
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-learning-with-differential-privacy
|
Deep Learning with Differential Privacy
|
1607.00133
|
http://arxiv.org/abs/1607.00133v2
|
http://arxiv.org/pdf/1607.00133v2.pdf
|
https://github.com/zzzer1019/FL_DP
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-to-pivot-with-adversarial-networks
|
Learning to Pivot with Adversarial Networks
|
1611.01046
|
http://arxiv.org/abs/1611.01046v3
|
http://arxiv.org/pdf/1611.01046v3.pdf
|
https://github.com/faroukmokhtar/GradProject
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/search-for-supersymmetry-in-events-with-one
|
Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at sqrt(s) = 13 TeV
|
1609.09386
|
https://arxiv.org/abs/1609.09386v2
|
https://arxiv.org/pdf/1609.09386v2.pdf
|
https://github.com/faroukmokhtar/GradProject
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/autoencoder-by-forest
|
AutoEncoder by Forest
|
1709.09018
|
http://arxiv.org/abs/1709.09018v1
|
http://arxiv.org/pdf/1709.09018v1.pdf
|
https://github.com/AntoinePassemiers/Encoder-Forest
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/semantic-segmentation-of-underwater-imagery
|
Semantic Segmentation of Underwater Imagery: Dataset and Benchmark
|
2004.01241
|
https://arxiv.org/abs/2004.01241v3
|
https://arxiv.org/pdf/2004.01241v3.pdf
|
https://github.com/xahidbuffon/SUIM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/traditional-and-accelerated-gradient-descent
|
Traditional and accelerated gradient descent for neural architecture search
|
2006.15218
|
https://arxiv.org/abs/2006.15218v3
|
https://arxiv.org/pdf/2006.15218v3.pdf
|
https://github.com/bibliotecadebabel/EvAI
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/segnet-a-deep-convolutional-encoder-decoder-1
|
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
|
1505.07293
|
http://arxiv.org/abs/1505.07293v1
|
http://arxiv.org/pdf/1505.07293v1.pdf
|
https://github.com/xahidbuffon/SUIM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rethinking-atrous-convolution-for-semantic
|
Rethinking Atrous Convolution for Semantic Image Segmentation
|
1706.05587
|
http://arxiv.org/abs/1706.05587v3
|
http://arxiv.org/pdf/1706.05587v3.pdf
|
https://github.com/xahidbuffon/SUIM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/repvgg-making-vgg-style-convnets-great-again
|
RepVGG: Making VGG-style ConvNets Great Again
|
2101.03697
|
https://arxiv.org/abs/2101.03697v3
|
https://arxiv.org/pdf/2101.03697v3.pdf
|
https://github.com/mindspore-ecosystem/mindcv/blob/main/mindcv/models/repvgg.py
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/mastering-2048-with-delayed-temporal
|
Mastering 2048 with Delayed Temporal Coherence Learning, Multi-Stage Weight Promotion, Redundant Encoding and Carousel Shaping
|
1604.05085
|
http://arxiv.org/abs/1604.05085v3
|
http://arxiv.org/pdf/1604.05085v3.pdf
|
https://github.com/abachurin/2048
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/blockwise-self-attention-for-long-document
|
Blockwise Self-Attention for Long Document Understanding
|
1911.02972
|
https://arxiv.org/abs/1911.02972v2
|
https://arxiv.org/pdf/1911.02972v2.pdf
|
https://github.com/xptree/BlockBERT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automatic-discrete-differentiation-and-its
|
Deep Energy-Based Modeling of Discrete-Time Physics
|
1905.08604
|
https://arxiv.org/abs/1905.08604v3
|
https://arxiv.org/pdf/1905.08604v3.pdf
|
https://github.com/tksmatsubara/discrete-autograd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/understanding-and-improving-interpolation-in
|
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
|
1807.07543
|
http://arxiv.org/abs/1807.07543v2
|
http://arxiv.org/pdf/1807.07543v2.pdf
|
https://github.com/baohq1595/aae-experiment
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/adversarial-autoencoders
|
Adversarial Autoencoders
|
1511.05644
|
http://arxiv.org/abs/1511.05644v2
|
http://arxiv.org/pdf/1511.05644v2.pdf
|
https://github.com/baohq1595/aae-experiment
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/sadicLiu/yolov3
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/high-quality-monocular-depth-estimation-via
|
High Quality Monocular Depth Estimation via Transfer Learning
|
1812.11941
|
http://arxiv.org/abs/1812.11941v2
|
http://arxiv.org/pdf/1812.11941v2.pdf
|
https://github.com/Intoxillectual/Monocular-Depth-Estimation-using-DenseNet169
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-complex-networks
|
Deep Complex Networks
|
1705.09792
|
http://arxiv.org/abs/1705.09792v4
|
http://arxiv.org/pdf/1705.09792v4.pdf
|
https://github.com/ypeleg/komplex
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/on-complex-valued-convolutional-neural
|
On Complex Valued Convolutional Neural Networks
|
1602.09046
|
http://arxiv.org/abs/1602.09046v1
|
http://arxiv.org/pdf/1602.09046v1.pdf
|
https://github.com/ypeleg/komplex
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/complex-valued-neural-networks-with-non
|
Complex-valued Neural Networks with Non-parametric Activation Functions
|
1802.08026
|
http://arxiv.org/abs/1802.08026v1
|
http://arxiv.org/pdf/1802.08026v1.pdf
|
https://github.com/ypeleg/komplex
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/one-shot-visual-imitation-learning-via-meta
|
One-Shot Visual Imitation Learning via Meta-Learning
|
1709.04905
|
http://arxiv.org/abs/1709.04905v1
|
http://arxiv.org/pdf/1709.04905v1.pdf
|
https://github.com/ErickRosete/MAML-Imitation-Learning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/physical-layer-encryption-using-a-vernam
|
Physical Layer Encryption using a Vernam Cipher
|
1910.08262
|
https://arxiv.org/abs/1910.08262v1
|
https://arxiv.org/pdf/1910.08262v1.pdf
|
https://github.com/ymirsky/VPSC-py
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/wide-deep-learning-for-recommender-systems
|
Wide & Deep Learning for Recommender Systems
|
1606.07792
|
http://arxiv.org/abs/1606.07792v1
|
http://arxiv.org/pdf/1606.07792v1.pdf
|
https://github.com/sandeepnair2812/Deep-Learning-Based-Search-and-Recommendation-System
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deepfm-a-factorization-machine-based-neural
|
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
|
1703.04247
|
http://arxiv.org/abs/1703.04247v1
|
http://arxiv.org/pdf/1703.04247v1.pdf
|
https://github.com/sandeepnair2812/Deep-Learning-Based-Search-and-Recommendation-System
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/Sezoir/DCGAN-Dog-Generator
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/oriented-point-sampling-for-plane-detection
|
Oriented Point Sampling for Plane Detection in Unorganized Point Clouds
|
1905.02553
|
https://arxiv.org/abs/1905.02553v1
|
https://arxiv.org/pdf/1905.02553v1.pdf
|
https://github.com/bsun7/Oriented-Point-Sampling
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/multistep-inverse-is-not-all-you-need
|
Multistep Inverse Is Not All You Need
|
2403.11940
|
https://arxiv.org/abs/2403.11940v2
|
https://arxiv.org/pdf/2403.11940v2.pdf
|
https://github.com/midi-lab/acdf
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/160803828
|
Prutor: A System for Tutoring CS1 and Collecting Student Programs for Analysis
|
1608.03828
|
http://arxiv.org/abs/1608.03828v1
|
http://arxiv.org/pdf/1608.03828v1.pdf
|
https://github.com/umairzahmed/seet2020
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/pypsa-eur-an-open-optimisation-model-of-the
|
PyPSA-Eur: An Open Optimisation Model of the European Transmission System
|
1806.01613
|
http://arxiv.org/abs/1806.01613v1
|
http://arxiv.org/pdf/1806.01613v1.pdf
|
https://github.com/pz-max/energyworld
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/language-agnostic-bert-sentence-embedding
|
Language-agnostic BERT Sentence Embedding
|
2007.01852
|
https://arxiv.org/abs/2007.01852v2
|
https://arxiv.org/pdf/2007.01852v2.pdf
|
https://github.com/bojone/labse
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/vulnerability-of-deep-reinforcement-learning
|
Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks
|
1701.04143
|
http://arxiv.org/abs/1701.04143v1
|
http://arxiv.org/pdf/1701.04143v1.pdf
|
https://github.com/coderatwork7/attack
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/model-free-bounds-for-multi-asset-options
|
Model-free bounds for multi-asset options using option-implied information and their exact computation
|
2006.14288
|
https://arxiv.org/abs/2006.14288v3
|
https://arxiv.org/pdf/2006.14288v3.pdf
|
https://github.com/qikunxiang/ModelFreePriceBounds
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/detecting-persuasive-atypicality-by-modeling
|
Detecting Persuasive Atypicality by Modeling Contextual Compatibility
| null |
http://openaccess.thecvf.com//content/ICCV2021/html/Guo_Detecting_Persuasive_Atypicality_by_Modeling_Contextual_Compatibility_ICCV_2021_paper.html
|
http://openaccess.thecvf.com//content/ICCV2021/papers/Guo_Detecting_Persuasive_Atypicality_by_Modeling_Contextual_Compatibility_ICCV_2021_paper.pdf
|
https://github.com/meiqiguo/iccv2021-atypicalitydetection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/ubermag-towards-more-effective-micromagnetic
|
Ubermag: Towards more effective micromagnetic workflows
|
2105.08355
|
https://arxiv.org/abs/2105.08355v1
|
https://arxiv.org/pdf/2105.08355v1.pdf
|
https://github.com/marijanbeg/2021-paper-ubermag
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/conditional-image-synthesis-with-auxiliary
|
Conditional Image Synthesis With Auxiliary Classifier GANs
|
1610.09585
|
http://arxiv.org/abs/1610.09585v4
|
http://arxiv.org/pdf/1610.09585v4.pdf
|
https://github.com/kushalpatil1997/text_to_image_synthesis
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/skip-thought-vectors
|
Skip-Thought Vectors
|
1506.06726
|
http://arxiv.org/abs/1506.06726v1
|
http://arxiv.org/pdf/1506.06726v1.pdf
|
https://github.com/kushalpatil1997/text_to_image_synthesis
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mask-shadowgan-learning-to-remove-shadows
|
Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data
|
1903.10683
|
https://arxiv.org/abs/1903.10683v3
|
https://arxiv.org/pdf/1903.10683v3.pdf
|
https://github.com/mducducd/ghost-free-shadow-removal
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/tac-gan-text-conditioned-auxiliary-classifier
|
TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network
|
1703.06412
|
http://arxiv.org/abs/1703.06412v2
|
http://arxiv.org/pdf/1703.06412v2.pdf
|
https://github.com/kushalpatil1997/text_to_image_synthesis
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/towards-ghost-free-shadow-removal-via-dual
|
Towards Ghost-free Shadow Removal via Dual Hierarchical Aggregation Network and Shadow Matting GAN
|
1911.08718
|
https://arxiv.org/abs/1911.08718v2
|
https://arxiv.org/pdf/1911.08718v2.pdf
|
https://github.com/mducducd/ghost-free-shadow-removal
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/single-image-reflection-separation-with
|
Single Image Reflection Separation with Perceptual Losses
|
1806.05376
|
http://arxiv.org/abs/1806.05376v1
|
http://arxiv.org/pdf/1806.05376v1.pdf
|
https://github.com/mducducd/ghost-free-shadow-removal
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/estimating-or-propagating-gradients-through-1
|
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
|
1308.3432
|
http://arxiv.org/abs/1308.3432v1
|
http://arxiv.org/pdf/1308.3432v1.pdf
|
https://github.com/georgeretsi/SparsityLoss
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bias-correction-of-learned-generative-models
|
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
|
1906.09531
|
https://arxiv.org/abs/1906.09531v2
|
https://arxiv.org/pdf/1906.09531v2.pdf
|
https://github.com/kevtran23/autoregressive_bias_correction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pano-avqa-grounded-audio-visual-question
|
Pano-AVQA: Grounded Audio-Visual Question Answering on 360deg Videos
| null |
http://openaccess.thecvf.com//content/ICCV2021/html/Yun_Pano-AVQA_Grounded_Audio-Visual_Question_Answering_on_360deg_Videos_ICCV_2021_paper.html
|
http://openaccess.thecvf.com//content/ICCV2021/papers/Yun_Pano-AVQA_Grounded_Audio-Visual_Question_Answering_on_360deg_Videos_ICCV_2021_paper.pdf
|
https://github.com/hs-yn/panoavqa
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-evidential-regression
|
Deep Evidential Regression
|
1910.02600
|
https://arxiv.org/abs/1910.02600v2
|
https://arxiv.org/pdf/1910.02600v2.pdf
|
https://github.com/deebuls/deep_evidential_regression_loss_pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/automatic-fault-detection-for-deep-learning
|
Automatic Fault Detection for Deep Learning Programs Using Graph Transformations
|
2105.08095
|
https://arxiv.org/abs/2105.08095v2
|
https://arxiv.org/pdf/2105.08095v2.pdf
|
https://github.com/neuralint/neuralint
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/eegnet-a-compact-convolutional-network-for
|
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
|
1611.08024
|
http://arxiv.org/abs/1611.08024v4
|
http://arxiv.org/pdf/1611.08024v4.pdf
|
https://github.com/adwaykanhere/FYP
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lewis-levenshtein-editing-for-unsupervised
|
LEWIS: Levenshtein Editing for Unsupervised Text Style Transfer
|
2105.08206
|
https://arxiv.org/abs/2105.08206v1
|
https://arxiv.org/pdf/2105.08206v1.pdf
|
https://github.com/machelreid/lewis
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.