paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/do-transformers-really-perform-bad-for-graph
|
Do Transformers Really Perform Bad for Graph Representation?
|
2106.05234
|
https://arxiv.org/abs/2106.05234v5
|
https://arxiv.org/pdf/2106.05234v5.pdf
|
https://github.com/microsoft/Graphormer
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/stagewise-unsupervised-domain-adaptation-with
|
Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training for Road Segmentation of Remote Sensing Images
|
2108.12611
|
https://arxiv.org/abs/2108.12611v1
|
https://arxiv.org/pdf/2108.12611v1.pdf
|
https://github.com/lanmng/roadda
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-objective-conflict-based-search-for
|
A Conflict-Based Search Framework for Multi-Objective Multi-Agent Path Finding
|
2101.03805
|
https://arxiv.org/abs/2101.03805v5
|
https://arxiv.org/pdf/2101.03805v5.pdf
|
https://github.com/wonderren/public_cppmomapf
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/subdimensional-expansion-for-multi-objective
|
Subdimensional Expansion for Multi-objective Multi-agent Path Finding
|
2102.01353
|
https://arxiv.org/abs/2102.01353v2
|
https://arxiv.org/pdf/2102.01353v2.pdf
|
https://github.com/wonderren/public_cppmomapf
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/conceptual-compression-via-deep-structure-and
|
Conceptual Compression via Deep Structure and Texture Synthesis
|
2011.04976
|
https://arxiv.org/abs/2011.04976v2
|
https://arxiv.org/pdf/2011.04976v2.pdf
|
https://github.com/changjianhui/LCIC-pytorch
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/single-stream-cnn-with-learnable-architecture
|
Single-stream CNN with Learnable Architecture for Multi-source Remote Sensing Data
|
2109.06094
|
https://arxiv.org/abs/2109.06094v2
|
https://arxiv.org/pdf/2109.06094v2.pdf
|
https://github.com/yyyyangyi/multi-source-rs-dgconv
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/awardee-solution-of-kdd-cup-2021-ogb-large
|
First Place Solution of KDD Cup 2021 & OGB Large-Scale Challenge Graph Prediction Track
|
2106.08279
|
https://arxiv.org/abs/2106.08279v3
|
https://arxiv.org/pdf/2106.08279v3.pdf
|
https://github.com/microsoft/Graphormer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-objective-conflict-based-search-using
|
Multi-objective Conflict-based Search Using Safe-interval Path Planning
|
2108.00745
|
https://arxiv.org/abs/2108.00745v3
|
https://arxiv.org/pdf/2108.00745v3.pdf
|
https://github.com/wonderren/public_cppmomapf
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-integrated-auto-encoder-block-switching-1
|
An integrated Auto Encoder-Block Switching defense approach to prevent adversarial attacks
|
2203.10930
|
https://arxiv.org/abs/2203.10930v1
|
https://arxiv.org/pdf/2203.10930v1.pdf
|
https://github.com/anirudh9784/Adversarial-Attacks-and-Defences
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/noise-dynamics-of-quantum-annealers
|
Noise Dynamics of Quantum Annealers: Estimating the Effective Noise Using Idle Qubits
|
2209.05648
|
https://arxiv.org/abs/2209.05648v2
|
https://arxiv.org/pdf/2209.05648v2.pdf
|
https://github.com/lanl/noise-indicator-qa
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-the-performance-of-deep-learning-models
|
On the performance of deep learning models for time series classification in streaming
|
2003.02544
|
https://arxiv.org/abs/2003.02544v2
|
https://arxiv.org/pdf/2003.02544v2.pdf
|
https://github.com/pedrolarben/ADLStream
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/ktrl-f-knowledge-augmented-in-document-search
|
KTRL+F: Knowledge-Augmented In-Document Search
|
2311.08329
|
https://arxiv.org/abs/2311.08329v4
|
https://arxiv.org/pdf/2311.08329v4.pdf
|
https://github.com/kaistai/ktrlf
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/depts-deep-expansion-learning-for-periodic-1
|
DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting
|
2203.07681
|
https://arxiv.org/abs/2203.07681v1
|
https://arxiv.org/pdf/2203.07681v1.pdf
|
https://github.com/weifantt/depts
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/n-beats-neural-basis-expansion-analysis-for
|
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
|
1905.10437
|
https://arxiv.org/abs/1905.10437v4
|
https://arxiv.org/pdf/1905.10437v4.pdf
|
https://github.com/weifantt/depts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/progressive-end-to-end-object-detection-in
|
Progressive End-to-End Object Detection in Crowded Scenes
|
2203.07669
|
https://arxiv.org/abs/2203.07669v3
|
https://arxiv.org/pdf/2203.07669v3.pdf
|
https://github.com/megvii-model/iter-e2edet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/transfer-learning-with-gaussian-processes-for
|
Transfer Learning with Gaussian Processes for Bayesian Optimization
|
2111.11223
|
https://arxiv.org/abs/2111.11223v2
|
https://arxiv.org/pdf/2111.11223v2.pdf
|
https://github.com/boschresearch/transfergpbo
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact
|
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
|
1602.07261
|
http://arxiv.org/abs/1602.07261v2
|
http://arxiv.org/pdf/1602.07261v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-33
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/inceptionnext-when-inception-meets-convnext
|
InceptionNeXt: When Inception Meets ConvNeXt
|
2303.16900
|
https://arxiv.org/abs/2303.16900v2
|
https://arxiv.org/pdf/2303.16900v2.pdf
|
https://github.com/leondgarse/keras_cv_attention_models/tree/main/keras_cv_attention_models/inceptionnext
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/querying-inconsistent-prioritized-data-with
|
Querying Inconsistent Prioritized Data with ORBITS: Algorithms, Implementation, and Experiments
|
2202.07980
|
https://arxiv.org/abs/2202.07980v2
|
https://arxiv.org/pdf/2202.07980v2.pdf
|
https://github.com/bourgaux/orbits
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/diagnosis-of-covid-19-using-chest-x-ray
|
Diagnosis of COVID-19 using chest X-ray images based on modified DarkCovidNet model
| null |
https://link.springer.com/article/10.1007/s12065-021-00679-7
|
https://link.springer.com/content/pdf/10.1007/s12065-021-00679-7.pdf
|
https://github.com/Dawit1922/Modified-DarkCovidNet
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/global-filter-networks-for-image
|
Global Filter Networks for Image Classification
|
2107.00645
|
https://arxiv.org/abs/2107.00645v2
|
https://arxiv.org/pdf/2107.00645v2.pdf
|
https://github.com/dslisleedh/MLP_based_models-tensorflow2/blob/master/gfnet.py
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/ufal-corpipe-at-crac-2022-effectivity-of
|
ÚFAL CorPipe at CRAC 2022: Effectivity of Multilingual Models for Coreference Resolution
|
2209.07278
|
https://arxiv.org/abs/2209.07278v3
|
https://arxiv.org/pdf/2209.07278v3.pdf
|
https://github.com/ufal/crac2022-corpipe
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/certrl-formalizing-convergence-proofs-for
|
CertRL: Formalizing Convergence Proofs for Value and Policy Iteration in Coq
|
2009.11403
|
https://arxiv.org/abs/2009.11403v2
|
https://arxiv.org/pdf/2009.11403v2.pdf
|
https://github.com/IBM/FormalML
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/stochastic-subgradient-method-converges-on
|
Stochastic subgradient method converges on tame functions
|
1804.07795
|
http://arxiv.org/abs/1804.07795v3
|
http://arxiv.org/pdf/1804.07795v3.pdf
|
https://github.com/IBM/FormalML
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/explaining-and-harnessing-adversarial
|
Explaining and Harnessing Adversarial Examples
|
1412.6572
|
http://arxiv.org/abs/1412.6572v3
|
http://arxiv.org/pdf/1412.6572v3.pdf
|
https://github.com/anirudh9784/Adversarial-Attacks-and-Defences
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/formalization-of-a-stochastic-approximation
|
Formalization of a Stochastic Approximation Theorem
|
2202.05959
|
https://arxiv.org/abs/2202.05959v2
|
https://arxiv.org/pdf/2202.05959v2.pdf
|
https://github.com/IBM/FormalML
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/manishsoni1908/mobilenet-ssd-keras
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/tgl-a-general-framework-for-temporal-gnn
|
TGL: A General Framework for Temporal GNN Training on Billion-Scale Graphs
|
2203.14883
|
https://arxiv.org/abs/2203.14883v2
|
https://arxiv.org/pdf/2203.14883v2.pdf
|
https://github.com/amazon-research/tgl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/error-profile-for-discontinuous-galerkin-time
|
Error Profile for Discontinuous Galerkin Time Stepping of Parabolic PDEs
|
2208.03846
|
https://arxiv.org/abs/2208.03846v2
|
https://arxiv.org/pdf/2208.03846v2.pdf
|
https://github.com/billmclean/dgerrorprofile
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/reinforcement-learned-distributed-multi-robot
|
Reinforcement Learned Distributed Multi-Robot Navigation with Reciprocal Velocity Obstacle Shaped Rewards
|
2203.10229
|
https://arxiv.org/abs/2203.10229v1
|
https://arxiv.org/pdf/2203.10229v1.pdf
|
https://github.com/hanruihua/rl_rvo_nav
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/metaphors-in-pre-trained-language-models
|
Metaphors in Pre-Trained Language Models: Probing and Generalization Across Datasets and Languages
|
2203.14139
|
https://arxiv.org/abs/2203.14139v1
|
https://arxiv.org/pdf/2203.14139v1.pdf
|
https://github.com/ehsanaghazadeh/metaphors_in_plms
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/freggan-with-k-space-loss-regularization-for
|
fRegGAN with K-space Loss Regularization for Medical Image Translation
|
2303.15938
|
https://arxiv.org/abs/2303.15938v2
|
https://arxiv.org/pdf/2303.15938v2.pdf
|
https://github.com/bayer-group/freggan
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sequential-predictive-conformal-inference-for
|
Sequential Predictive Conformal Inference for Time Series
|
2212.03463
|
https://arxiv.org/abs/2212.03463v3
|
https://arxiv.org/pdf/2212.03463v3.pdf
|
https://github.com/hamrel-cxu/spci-code
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/moving-obstacle-avoidance-a-data-driven-risk
|
Moving Obstacle Avoidance: a Data-Driven Risk-Aware Approach
|
2203.14913
|
https://arxiv.org/abs/2203.14913v1
|
https://arxiv.org/pdf/2203.14913v1.pdf
|
https://github.com/skylarxwei/riskaware_mpc_ssa_sim
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/vakyansh-asr-toolkit-for-low-resource-indic
|
Vakyansh: ASR Toolkit for Low Resource Indic languages
|
2203.16512
|
https://arxiv.org/abs/2203.16512v2
|
https://arxiv.org/pdf/2203.16512v2.pdf
|
https://github.com/Open-Speech-EkStep/vakyansh-models
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/forecast-mae-self-supervised-pre-training-for
|
Forecast-MAE: Self-supervised Pre-training for Motion Forecasting with Masked Autoencoders
|
2308.09882
|
https://arxiv.org/abs/2308.09882v1
|
https://arxiv.org/pdf/2308.09882v1.pdf
|
https://github.com/jchengai/forecast-mae
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/graph-neural-networks-in-iot-a-survey
|
Graph Neural Networks in IoT: A Survey
|
2203.15935
|
https://arxiv.org/abs/2203.15935v2
|
https://arxiv.org/pdf/2203.15935v2.pdf
|
https://github.com/guimindong/gnn4iot
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-fast-algorithm-for-convolutional-structured
|
A Fast Algorithm for Convolutional Structured Low-Rank Matrix Recovery
|
1609.07429
|
https://arxiv.org/abs/1609.07429v3
|
https://arxiv.org/pdf/1609.07429v3.pdf
|
https://github.com/yhao-z/GIRAF-3d-CG
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/large-language-models-are-state-of-the-art-1
|
ICE-Score: Instructing Large Language Models to Evaluate Code
|
2304.14317
|
https://arxiv.org/abs/2304.14317v2
|
https://arxiv.org/pdf/2304.14317v2.pdf
|
https://github.com/terryyz/llm-code-eval
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mixing-dirichlet-topic-models-and-word
|
Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec
|
1605.02019
|
http://arxiv.org/abs/1605.02019v1
|
http://arxiv.org/pdf/1605.02019v1.pdf
|
https://github.com/Wurmloch/TopicModeling
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/discovering-new-intents-with-deep-aligned
|
Discovering New Intents with Deep Aligned Clustering
|
2012.08987
|
https://arxiv.org/abs/2012.08987v7
|
https://arxiv.org/pdf/2012.08987v7.pdf
|
https://github.com/hanleizhang/DeepAligned-Clustering
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-data-compression-for-3d-sparse-tpc
|
Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder
|
2111.05423
|
https://arxiv.org/abs/2111.05423v1
|
https://arxiv.org/pdf/2111.05423v1.pdf
|
https://github.com/BNL-DAQ-LDRD/NeuralCompression
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/accelerating-the-super-resolution
|
Accelerating the Super-Resolution Convolutional Neural Network
|
1608.00367
|
http://arxiv.org/abs/1608.00367v1
|
http://arxiv.org/pdf/1608.00367v1.pdf
|
https://github.com/Nhat-Thanh/FSRCNN-Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-fairness-aware-adversarial-learning
|
Towards Fairness-Aware Adversarial Learning
|
2402.17729
|
https://arxiv.org/abs/2402.17729v2
|
https://arxiv.org/pdf/2402.17729v2.pdf
|
https://github.com/TrustAI/FAAL
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rcabench-open-benchmarking-platform-for-root
|
RCABench: Open Benchmarking Platform for Root Cause Analysis
|
2303.05029
|
https://arxiv.org/abs/2303.05029v2
|
https://arxiv.org/pdf/2303.05029v2.pdf
|
https://github.com/ricseclab/rcabench
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cicero-a-dataset-for-contextualized
|
CICERO: A Dataset for Contextualized Commonsense Inference in Dialogues
|
2203.13926
|
https://arxiv.org/abs/2203.13926v3
|
https://arxiv.org/pdf/2203.13926v3.pdf
|
https://github.com/declare-lab/CICERO
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/chordal-sparsity-for-lipschitz-constant
|
Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks
|
2204.00846
|
https://arxiv.org/abs/2204.00846v2
|
https://arxiv.org/pdf/2204.00846v2.pdf
|
https://github.com/antonxue/chordal-lipsdp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/formalization-of-dependent-type-theory-the
|
Formalization of dependent type theory: The example of CaTT
|
2111.14736
|
https://arxiv.org/abs/2111.14736v1
|
https://arxiv.org/pdf/2111.14736v1.pdf
|
https://github.com/thibautbenjamin/catt-formalization
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bimodal-distributed-binarized-neural-networks
|
Bimodal Distributed Binarized Neural Networks
|
2204.02004
|
https://arxiv.org/abs/2204.02004v1
|
https://arxiv.org/pdf/2204.02004v1.pdf
|
https://github.com/blueanon/bd-bnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/universalner-targeted-distillation-from-large
|
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition
|
2308.03279
|
https://arxiv.org/abs/2308.03279v2
|
https://arxiv.org/pdf/2308.03279v2.pdf
|
https://github.com/universal-ner/universal-ner
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/name-your-style-an-arbitrary-artist-aware
|
Name Your Style: An Arbitrary Artist-aware Image Style Transfer
|
2202.13562
|
https://arxiv.org/abs/2202.13562v3
|
https://arxiv.org/pdf/2202.13562v3.pdf
|
https://github.com/Holmes-Alan/TxST
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cycle-index-polynomials-and-generalized
|
Cycle Index Polynomials and Generalized Quantum Separability Tests
|
2208.14596
|
https://arxiv.org/abs/2208.14596v3
|
https://arxiv.org/pdf/2208.14596v3.pdf
|
https://github.com/mlabo15/GeneralizedSeparability
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/nevis-22-a-stream-of-100-tasks-sampled-from
|
NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research
|
2211.11747
|
https://arxiv.org/abs/2211.11747v2
|
https://arxiv.org/pdf/2211.11747v2.pdf
|
https://github.com/deepmind/dm_nevis
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/multi-class-probabilistic-classification
|
Multi-class probabilistic classification using inductive and cross Venn-Abers predictors
| null |
https://proceedings.mlr.press/v60/manokhin17a.html
|
https://proceedings.mlr.press/v60/manokhin17a.html
|
https://github.com/valeman/Multi-class-probabilistic-classification
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/deformable-model-driven-neural-rendering-for
|
Deformable Model-Driven Neural Rendering for High-Fidelity 3D Reconstruction of Human Heads Under Low-View Settings
|
2303.13855
|
https://arxiv.org/abs/2303.13855v2
|
https://arxiv.org/pdf/2303.13855v2.pdf
|
https://github.com/xubaixinxbx/3dheads
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/stabilization-of-affine-systems-with
|
Stabilization of affine systems with polytopic control value sets
|
2112.02451
|
https://arxiv.org/abs/2112.02451v2
|
https://arxiv.org/pdf/2112.02451v2.pdf
|
https://github.com/Stabilization-over-polytopic-CVS/Stabilization-of-affine-systems-with-polytopic-control-value-sets
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/thermodynamical-material-networks-for
|
Thermodynamical Material Networks for Modeling, Planning, and Control of Circular Material Flows
|
2111.10693
|
https://arxiv.org/abs/2111.10693v3
|
https://arxiv.org/pdf/2111.10693v3.pdf
|
https://github.com/fedezocco/tmnbiometh-scipy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-neural-network-representation-of-density
|
Deep-Learning Density Functional Theory Hamiltonian for Efficient ab initio Electronic-Structure Calculation
|
2104.03786
|
https://arxiv.org/abs/2104.03786v2
|
https://arxiv.org/pdf/2104.03786v2.pdf
|
https://github.com/mzjb/deeph-pack
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/ehrcon-dataset-for-checking-consistency
|
EHRCon: Dataset for Checking Consistency between Unstructured Notes and Structured Tables in Electronic Health Records
|
2406.16341
|
https://arxiv.org/abs/2406.16341v2
|
https://arxiv.org/pdf/2406.16341v2.pdf
|
https://github.com/dustn1259/ehrcon
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-novel-bayesian-extrapolation-design-for
|
A Novel Bayesian Extrapolation Design for Assessing Equivalence in Exposure-Response Curves between Pediatric and Adult Populations
|
2505.17397
|
https://arxiv.org/abs/2505.17397v1
|
https://arxiv.org/pdf/2505.17397v1.pdf
|
https://github.com/zhongheng-Biostatistics/Pediatric-Bayesian-Extrapolation-Design
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/ecg-arrhythmia-classification-using-a-2-d
|
ECG arrhythmia classification using a 2-D convolutional neural network
|
1804.06812
|
http://arxiv.org/abs/1804.06812v1
|
http://arxiv.org/pdf/1804.06812v1.pdf
|
https://github.com/celiedel/ECG_Classification_with_2D_CNN
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/devil-is-in-channels-contrastive-single
|
Devil is in Channels: Contrastive Single Domain Generalization for Medical Image Segmentation
|
2306.05254
|
https://arxiv.org/abs/2306.05254v2
|
https://arxiv.org/pdf/2306.05254v2.pdf
|
https://github.com/shishuaihu/ccsdg
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/automatic-classification-of-stop-realisation
|
Automatic classification of stop realisation with wav2vec2.0
|
2505.23688
|
https://arxiv.org/abs/2505.23688v2
|
https://arxiv.org/pdf/2505.23688v2.pdf
|
https://github.com/james-tanner/wav2vec-burst-detection
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/190412593
|
Density-based Community Detection/Optimization
|
1904.12593
|
http://arxiv.org/abs/1904.12593v1
|
http://arxiv.org/pdf/1904.12593v1.pdf
|
https://github.com/cran/DynComm
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/amaranth819/dcgan-cifar10-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/local-sample-weighted-multiple-kernel
|
Local Sample-weighted Multiple Kernel Clustering with Consensus Discriminative Graph
|
2207.02846
|
https://arxiv.org/abs/2207.02846v1
|
https://arxiv.org/pdf/2207.02846v1.pdf
|
https://github.com/liliangnudt/lswmkc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/investigating-accuracy-novelty-performance
|
Investigating Accuracy-Novelty Performance for Graph-based Collaborative Filtering
|
2204.12326
|
https://arxiv.org/abs/2204.12326v2
|
https://arxiv.org/pdf/2204.12326v2.pdf
|
https://github.com/fuxiailab/r-adjnorm
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/low-light-maritime-image-enhancement-with
|
Low-Light Maritime Image Enhancement with Regularized Illumination Optimization and Deep Noise Suppression
|
2008.03765
|
https://arxiv.org/abs/2008.03765v1
|
https://arxiv.org/pdf/2008.03765v1.pdf
|
https://github.com/gy65896/Enhancement-Access
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of
|
SimCSE: Simple Contrastive Learning of Sentence Embeddings
|
2104.08821
|
https://arxiv.org/abs/2104.08821v4
|
https://arxiv.org/pdf/2104.08821v4.pdf
|
https://github.com/dltmddbs100/SimCSE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/crackseg9k-a-collection-and-benchmark-for
|
CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks
|
2208.13054
|
https://arxiv.org/abs/2208.13054v1
|
https://arxiv.org/pdf/2208.13054v1.pdf
|
https://github.com/Dhananjay42/crackseg9k
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/easy-and-efficient-transformer-scalable
|
Easy and Efficient Transformer : Scalable Inference Solution For large NLP model
|
2104.12470
|
https://arxiv.org/abs/2104.12470v5
|
https://arxiv.org/pdf/2104.12470v5.pdf
|
https://github.com/NetEase-FuXi/EET
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/controllable-textual-inversion-for
|
Controllable Textual Inversion for Personalized Text-to-Image Generation
|
2304.05265
|
https://arxiv.org/abs/2304.05265v3
|
https://arxiv.org/pdf/2304.05265v3.pdf
|
https://github.com/jnzju/coti
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/paradime-a-framework-for-parametric
|
ParaDime: A Framework for Parametric Dimensionality Reduction
|
2210.04582
|
https://arxiv.org/abs/2210.04582v3
|
https://arxiv.org/pdf/2210.04582v3.pdf
|
https://github.com/jku-vds-lab/paradime
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/single-index-mixture-cure-model-under
|
Single-index mixture cure model under monotonicity constraints
|
2211.09464
|
https://arxiv.org/abs/2211.09464v2
|
https://arxiv.org/pdf/2211.09464v2.pdf
|
https://github.com/tp-yuen/msic
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-fully-dynamic-algorithm-for-k-regret
|
A Fully Dynamic Algorithm for k-Regret Minimizing Sets
|
2005.14493
|
https://arxiv.org/abs/2005.14493v1
|
https://arxiv.org/pdf/2005.14493v1.pdf
|
https://github.com/yhwang1990/dynamic-rms
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/semi-supervised-classification-with-graph
|
Semi-Supervised Classification with Graph Convolutional Networks
|
1609.02907
|
http://arxiv.org/abs/1609.02907v4
|
http://arxiv.org/pdf/1609.02907v4.pdf
|
https://github.com/kiharalab/gnn_pocket
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/scone-benchmarking-negation-reasoning-in
|
ScoNe: Benchmarking Negation Reasoning in Language Models With Fine-Tuning and In-Context Learning
|
2305.19426
|
https://arxiv.org/abs/2305.19426v1
|
https://arxiv.org/pdf/2305.19426v1.pdf
|
https://github.com/selenashe/scone
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sub-word-alignment-is-still-useful-a-vest
|
Sub-Word Alignment Is Still Useful: A Vest-Pocket Method for Enhancing Low-Resource Machine Translation
|
2205.04067
|
https://arxiv.org/abs/2205.04067v1
|
https://arxiv.org/pdf/2205.04067v1.pdf
|
https://github.com/Cosmos-Break/transfer-mt-submit
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-to-ignore-rethinking-attention-in
|
Learning to ignore: rethinking attention in CNNs
|
2111.05684
|
https://arxiv.org/abs/2111.05684v1
|
https://arxiv.org/pdf/2111.05684v1.pdf
|
https://github.com/firasl/inverse_attention
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/interpretable-ai-for-relating-brain
|
Interpretable AI for relating brain structural and functional connectomes
|
2210.05672
|
https://arxiv.org/abs/2210.05672v2
|
https://arxiv.org/pdf/2210.05672v2.pdf
|
https://github.com/imkeithyang/staf-gate
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multimodality-multi-lead-ecg-arrhythmia
|
Multimodality Multi-Lead ECG Arrhythmia Classification using Self-Supervised Learning
|
2210.06297
|
https://arxiv.org/abs/2210.06297v1
|
https://arxiv.org/pdf/2210.06297v1.pdf
|
https://github.com/uark-aicv/ecg_ssl_12lead
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tts-cgan-a-transformer-time-series
|
TTS-CGAN: A Transformer Time-Series Conditional GAN for Biosignal Data Augmentation
|
2206.13676
|
https://arxiv.org/abs/2206.13676v1
|
https://arxiv.org/pdf/2206.13676v1.pdf
|
https://github.com/imics-lab/tts-cgan
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-optimal-transport
|
Neural Optimal Transport
|
2201.12220
|
https://arxiv.org/abs/2201.12220v3
|
https://arxiv.org/pdf/2201.12220v3.pdf
|
https://github.com/iamalexkorotin/neuraloptimaltransport
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/contextual-instance-decoupling-for-robust
|
Contextual Instance Decoupling for Robust Multi-Person Pose Estimation
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Wang_Contextual_Instance_Decoupling_for_Robust_Multi-Person_Pose_Estimation_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Wang_Contextual_Instance_Decoupling_for_Robust_Multi-Person_Pose_Estimation_CVPR_2022_paper.pdf
|
https://github.com/kennethwdk/cid
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/umiformer-mining-the-correlations-between
|
UMIFormer: Mining the Correlations between Similar Tokens for Multi-View 3D Reconstruction
|
2302.13987
|
https://arxiv.org/abs/2302.13987v2
|
https://arxiv.org/pdf/2302.13987v2.pdf
|
https://github.com/garyzhu1996/umiformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-weak-lensing-redshift-distribution
|
Enhancing weak lensing redshift distribution characterization by optimizing the Dark Energy Survey Self-Organizing Map Photo-z method
|
2408.00922
|
https://arxiv.org/abs/2408.00922v1
|
https://arxiv.org/pdf/2408.00922v1.pdf
|
https://github.com/AndresaCampos/sompz_y6
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/emobank-studying-the-impact-of-annotation-1
|
EmoBank: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis
|
2205.01996
|
https://arxiv.org/abs/2205.01996v1
|
https://arxiv.org/pdf/2205.01996v1.pdf
|
https://github.com/JULIELab/EmoBank
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/data-driven-feedback-stabilization-of-1
|
Data-driven control of switched linear systems with probabilistic stability guarantees
|
2103.10823
|
https://arxiv.org/abs/2103.10823v2
|
https://arxiv.org/pdf/2103.10823v2.pdf
|
https://github.com/zhemingwang/datadrivenswitchcontrol
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/m-afl-non-intrusive-feedback-driven-fuzzing
|
$μ$AFL: Non-intrusive Feedback-driven Fuzzing for Microcontroller Firmware
|
2202.03013
|
https://arxiv.org/abs/2202.03013v3
|
https://arxiv.org/pdf/2202.03013v3.pdf
|
https://github.com/mcusec/microafl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/zs4ie-a-toolkit-for-zero-shot-information
|
ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations
|
2203.13602
|
https://arxiv.org/abs/2203.13602v3
|
https://arxiv.org/pdf/2203.13602v3.pdf
|
https://github.com/osainz59/Ask2Transformers
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/trafficqa-a-question-answering-benchmark-and
|
SUTD-TrafficQA: A Question Answering Benchmark and an Efficient Network for Video Reasoning over Traffic Events
|
2103.15538
|
https://arxiv.org/abs/2103.15538v3
|
https://arxiv.org/pdf/2103.15538v3.pdf
|
https://github.com/MarkHershey/arxiv-dl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/taglets-a-system-for-automatic-semi
|
TAGLETS: A System for Automatic Semi-Supervised Learning with Auxiliary Data
|
2111.04798
|
https://arxiv.org/abs/2111.04798v3
|
https://arxiv.org/pdf/2111.04798v3.pdf
|
https://github.com/batsresearch/piriyakulkij-mlsys22-code
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hierarchical-representations-and-explicit
|
Hierarchical Representations and Explicit Memory: Learning Effective Navigation Policies on 3D Scene Graphs using Graph Neural Networks
|
2108.01176
|
https://arxiv.org/abs/2108.01176v2
|
https://arxiv.org/pdf/2108.01176v2.pdf
|
https://github.com/mit-tesse/dsg-rl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-confound-regression-adversarial-network
|
Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham
|
2205.02885
|
https://arxiv.org/abs/2205.02885v2
|
https://arxiv.org/pdf/2205.02885v2.pdf
|
https://github.com/mleming/mucran
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/deep-radio-interferometric-imaging-with
|
Deep Radio Interferometric Imaging with POLISH: DSA-2000 and weak lensing
|
2111.03249
|
https://arxiv.org/abs/2111.03249v2
|
https://arxiv.org/pdf/2111.03249v2.pdf
|
https://github.com/liamconnor/polish-pub
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/simplifying-approach-to-node-classification
|
Simplifying approach to Node Classification in Graph Neural Networks
|
2111.06748
|
https://arxiv.org/abs/2111.06748v1
|
https://arxiv.org/pdf/2111.06748v1.pdf
|
https://github.com/sunilkmaurya/FSGNN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/memorizing-transformers-1
|
Memorizing Transformers
|
2203.08913
|
https://arxiv.org/abs/2203.08913v1
|
https://arxiv.org/pdf/2203.08913v1.pdf
|
https://github.com/lucidrains/memorizing-transformers-pytorch
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/do-transformers-need-deep-long-range-memory-1
|
Do Transformers Need Deep Long-Range Memory
|
2007.03356
|
https://arxiv.org/abs/2007.03356v1
|
https://arxiv.org/pdf/2007.03356v1.pdf
|
https://github.com/lucidrains/memorizing-transformers-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deraincyclegan-an-attention-guided
|
DerainCycleGAN: Rain Attentive CycleGAN for Single Image Deraining and Rainmaking
|
1912.07015
|
https://arxiv.org/abs/1912.07015v4
|
https://arxiv.org/pdf/1912.07015v4.pdf
|
https://github.com/OaDsis/DerainCycleGAN
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/denseclip-extract-free-dense-labels-from-clip
|
Extract Free Dense Labels from CLIP
|
2112.01071
|
https://arxiv.org/abs/2112.01071v2
|
https://arxiv.org/pdf/2112.01071v2.pdf
|
https://github.com/chongzhou96/maskclip
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.