|
|
--- |
|
|
license: cc-by-4.0 |
|
|
task_categories: |
|
|
- text-generation |
|
|
- summarization |
|
|
language: |
|
|
- code |
|
|
tags: |
|
|
- code |
|
|
- documentation |
|
|
- docstring |
|
|
- code-to-text |
|
|
- python |
|
|
- java |
|
|
- javascript |
|
|
- typescript |
|
|
- cpp |
|
|
size_categories: |
|
|
- 10K<n<100K |
|
|
--- |
|
|
|
|
|
# Code2Doc: Function-Documentation Pairs Dataset |
|
|
|
|
|
A curated dataset of **13,358** high-quality function-documentation pairs extracted from popular open-source repositories on GitHub. Designed for training models to generate documentation from code. |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
This dataset contains functions paired with their docstrings/documentation comments from 5 programming languages, extracted from well-maintained, highly-starred GitHub repositories. |
|
|
|
|
|
### Languages Distribution |
|
|
|
|
|
| Language | Train | Val | Test | Total | |
|
|
|----------|-------|-----|------|-------| |
|
|
| Java | 6,560 (61.4%) | 820 | 820 | 8,200 | |
|
|
| Python | 2,885 (27.0%) | 360 | 362 | 3,607 | |
|
|
| TypeScript | 681 (6.4%) | 85 | 86 | 852 | |
|
|
| JavaScript | 428 (4.0%) | 53 | 55 | 536 | |
|
|
| C++ | 130 (1.2%) | 16 | 17 | 163 | |
|
|
| **Total** | **10,684** | **1,334** | **1,340** | **13,358** | |
|
|
|
|
|
### Source Repositories |
|
|
|
|
|
The data was extracted from high-quality open-source projects including: |
|
|
|
|
|
**Python:** Django, PyTorch, Pandas, NumPy, scikit-learn, FastAPI, Flask, Celery, Airflow, Requests |
|
|
|
|
|
**Java:** Guava, Elasticsearch, Spring Framework, Spring Boot, Apache Kafka, Commons-Lang |
|
|
|
|
|
**TypeScript:** TypeScript, VS Code, Angular, Prisma, Grafana, Storybook, NestJS |
|
|
|
|
|
**JavaScript:** React, Node.js, Lodash, Axios, Express |
|
|
|
|
|
**C++:** OpenCV, Protobuf, Folly, gRPC, LLVM, TensorFlow |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
|
|
| Field | Type | Description | |
|
|
|-------|------|-------------| |
|
|
| `function_name` | string | Name of the function/method | |
|
|
| `function_code` | string | Complete source code of the function | |
|
|
| `documentation` | string | Extracted docstring/documentation | |
|
|
| `language` | string | Programming language | |
|
|
| `file_path` | string | Original file path in repository | |
|
|
| `line_number` | int | Line number where function starts | |
|
|
| `parameters` | list[string] | List of parameter names | |
|
|
| `return_type` | string | Return type annotation (if available) | |
|
|
| `has_type_hints` | bool | Whether function has type annotations | |
|
|
| `complexity` | int | Cyclomatic complexity score | |
|
|
| `quality_score` | float | Documentation quality score (0-10) | |
|
|
| `repo_name` | string | Source repository (owner/repo) | |
|
|
| `repo_stars` | int | Repository star count at extraction time | |
|
|
| `docstring_style` | string | Documentation style (google, numpy, sphinx, jsdoc, javadoc, doxygen) | |
|
|
| `is_async` | bool | Whether function is async | |
|
|
|
|
|
### Data Splits |
|
|
|
|
|
- **Train:** 10,684 samples (80%) |
|
|
- **Validation:** 1,334 samples (10%) |
|
|
- **Test:** 1,340 samples (10%) |
|
|
|
|
|
Splits are stratified by language to maintain consistent distribution across sets. |
|
|
|
|
|
## Data Processing Pipeline |
|
|
|
|
|
The dataset was created through a multi-stage pipeline: |
|
|
|
|
|
1. **Extraction:** Used tree-sitter parsers to accurately extract functions with documentation |
|
|
2. **Basic Filtering:** Removed test functions, trivial functions, and applied length constraints |
|
|
3. **Quality Scoring:** Scored documentation completeness (parameters, returns, examples) |
|
|
4. **Deduplication:** Removed exact and near-duplicates using MinHash LSH |
|
|
5. **AI Detection:** Filtered potentially AI-generated documentation |
|
|
|
|
|
### Quality Criteria |
|
|
|
|
|
- Minimum documentation length: 20 characters |
|
|
- Maximum documentation length: 10,000 characters |
|
|
- Minimum code length: 50 characters |
|
|
- Excluded test functions and trivial getters/setters |
|
|
- Required meaningful documentation structure |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
dataset = load_dataset("kaanrkaraman/code2doc") |
|
|
|
|
|
# Access splits |
|
|
train_data = dataset["train"] |
|
|
val_data = dataset["val"] |
|
|
test_data = dataset["test"] |
|
|
|
|
|
# Example: Get a Python function |
|
|
python_samples = train_data.filter(lambda x: x["language"] == "python") |
|
|
sample = python_samples[0] |
|
|
|
|
|
print(f"Function: {sample['function_name']}") |
|
|
print(f"Code:\n{sample['function_code']}") |
|
|
print(f"Documentation:\n{sample['documentation']}") |
|
|
``` |
|
|
|
|
|
### For Fine-tuning |
|
|
|
|
|
```python |
|
|
def format_for_training(example): |
|
|
return { |
|
|
"input": f"Generate documentation for the following {example['language']} function:\n\n{example['function_code']}", |
|
|
"output": example["documentation"] |
|
|
} |
|
|
|
|
|
formatted_dataset = dataset.map(format_for_training) |
|
|
``` |
|
|
|
|
|
## Intended Use |
|
|
|
|
|
- **Training code documentation generation models** |
|
|
- **Fine-tuning LLMs for code-to-text tasks** |
|
|
- **Evaluating documentation quality metrics** |
|
|
- **Research on code understanding and generation** |
|
|
|
|
|
## Limitations |
|
|
|
|
|
- Heavily weighted towards Java due to verbose documentation practices |
|
|
- C++ representation is small due to different documentation conventions |
|
|
- Documentation quality varies by repository coding standards |
|
|
- Extracted from a specific snapshot in time (December 2025) |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@misc{recep_kaan_karaman_2025, |
|
|
author = {Recep Kaan Karaman and Meftun Akarsu}, |
|
|
title = {code2doc (Revision cadd4e4)}, |
|
|
year = 2025, |
|
|
url = {https://huggingface.co/datasets/kaanrkaraman/code2doc}, |
|
|
doi = {10.57967/hf/7310}, |
|
|
publisher = {Hugging Face} |
|
|
} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
This dataset is released under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) License. The source code comes from repositories with permissive licenses (MIT, Apache 2.0, BSD). |
|
|
|