Datasets:
text
stringlengths 16
20
|
|---|
M-33-20-D-c-4-2_0
|
M-33-20-D-c-4-2_1
|
M-33-20-D-c-4-2_10
|
M-33-20-D-c-4-2_100
|
M-33-20-D-c-4-2_102
|
M-33-20-D-c-4-2_104
|
M-33-20-D-c-4-2_106
|
M-33-20-D-c-4-2_108
|
M-33-20-D-c-4-2_109
|
M-33-20-D-c-4-2_11
|
M-33-20-D-c-4-2_111
|
M-33-20-D-c-4-2_112
|
M-33-20-D-c-4-2_114
|
M-33-20-D-c-4-2_115
|
M-33-20-D-c-4-2_118
|
M-33-20-D-c-4-2_119
|
M-33-20-D-c-4-2_12
|
M-33-20-D-c-4-2_121
|
M-33-20-D-c-4-2_122
|
M-33-20-D-c-4-2_123
|
M-33-20-D-c-4-2_13
|
M-33-20-D-c-4-2_130
|
M-33-20-D-c-4-2_131
|
M-33-20-D-c-4-2_132
|
M-33-20-D-c-4-2_133
|
M-33-20-D-c-4-2_137
|
M-33-20-D-c-4-2_139
|
M-33-20-D-c-4-2_14
|
M-33-20-D-c-4-2_140
|
M-33-20-D-c-4-2_141
|
M-33-20-D-c-4-2_142
|
M-33-20-D-c-4-2_144
|
M-33-20-D-c-4-2_146
|
M-33-20-D-c-4-2_148
|
M-33-20-D-c-4-2_149
|
M-33-20-D-c-4-2_15
|
M-33-20-D-c-4-2_151
|
M-33-20-D-c-4-2_152
|
M-33-20-D-c-4-2_154
|
M-33-20-D-c-4-2_155
|
M-33-20-D-c-4-2_156
|
M-33-20-D-c-4-2_157
|
M-33-20-D-c-4-2_159
|
M-33-20-D-c-4-2_16
|
M-33-20-D-c-4-2_160
|
M-33-20-D-c-4-2_162
|
M-33-20-D-c-4-2_163
|
M-33-20-D-c-4-2_164
|
M-33-20-D-c-4-2_166
|
M-33-20-D-c-4-2_167
|
M-33-20-D-c-4-2_168
|
M-33-20-D-c-4-2_169
|
M-33-20-D-c-4-2_170
|
M-33-20-D-c-4-2_171
|
M-33-20-D-c-4-2_172
|
M-33-20-D-c-4-2_173
|
M-33-20-D-c-4-2_174
|
M-33-20-D-c-4-2_175
|
M-33-20-D-c-4-2_176
|
M-33-20-D-c-4-2_177
|
M-33-20-D-c-4-2_18
|
M-33-20-D-c-4-2_180
|
M-33-20-D-c-4-2_181
|
M-33-20-D-c-4-2_182
|
M-33-20-D-c-4-2_184
|
M-33-20-D-c-4-2_185
|
M-33-20-D-c-4-2_187
|
M-33-20-D-c-4-2_188
|
M-33-20-D-c-4-2_189
|
M-33-20-D-c-4-2_190
|
M-33-20-D-c-4-2_191
|
M-33-20-D-c-4-2_192
|
M-33-20-D-c-4-2_194
|
M-33-20-D-c-4-2_196
|
M-33-20-D-c-4-2_198
|
M-33-20-D-c-4-2_199
|
M-33-20-D-c-4-2_20
|
M-33-20-D-c-4-2_200
|
M-33-20-D-c-4-2_201
|
M-33-20-D-c-4-2_203
|
M-33-20-D-c-4-2_204
|
M-33-20-D-c-4-2_206
|
M-33-20-D-c-4-2_208
|
M-33-20-D-c-4-2_209
|
M-33-20-D-c-4-2_211
|
M-33-20-D-c-4-2_212
|
M-33-20-D-c-4-2_213
|
M-33-20-D-c-4-2_214
|
M-33-20-D-c-4-2_216
|
M-33-20-D-c-4-2_218
|
M-33-20-D-c-4-2_219
|
M-33-20-D-c-4-2_220
|
M-33-20-D-c-4-2_221
|
M-33-20-D-c-4-2_223
|
M-33-20-D-c-4-2_224
|
M-33-20-D-c-4-2_225
|
M-33-20-D-c-4-2_23
|
M-33-20-D-c-4-2_230
|
M-33-20-D-c-4-2_234
|
M-33-20-D-c-4-2_235
|
End of preview. Expand
in Data Studio
The Dataset
The LandCover.ai (Land Cover from Aerial Imagery) dataset is a dataset for automatic mapping of buildings, woodlands, water and roads from aerial images.
Dataset features
- land cover from Poland, Central Europe (1)
- three spectral bands - RGB
- 33 orthophotos with 25 cm per pixel resolution (~9000x9500 px)
- 8 orthophotos with 50 cm per pixel resolution (~4200x4700 px)
- total area of 216.27 km2
Dataset format
- rasters are three-channel GeoTiffs with EPSG:2180 spatial reference system
- masks are single-channel GeoTiffs with EPSG:2180 spatial reference system
(1): Image source: Head Office of Geodesy and Cartography, Poland
Reproduce and compare
We provide split.py to split images into 512x512 pieces, and following files: train.txt, val.txt and test.txt containing lists of pieces used for training, validation and testing respectively.
Versions
Version 1
- classes: building (1), woodland (2), water(3), road(4)
- areas: 1.85 km2 of buildings, 72.02 km2 of woodlands, 13.15 km2 of water, 3.5 km2 of roads
Citation
To cite our work, please use the following:
@InProceedings{Boguszewski_2021_CVPR,
author = {Boguszewski, Adrian and Batorski, Dominik and Ziemba-Jankowska, Natalia and Dziedzic, Tomasz and Zambrzycka, Anna},
title = {LandCover.ai: Dataset for Automatic Mapping of Buildings, Woodlands, Water and Roads from Aerial Imagery},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2021},
pages = {1102-1110}
}
License
This dataset is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Contact
If you encounter any problem or have any feedback, please contact [email protected]
- Downloads last month
- 215