Learning High-Quality and General-Purpose Phrase Representations
Paper
•
2401.10407
•
Published
Dataset
stringlengths 4
28
| Left
int64 201
6.93k
| Right
int64 10
1.16k
| Matches
int64 10
1.16k
|
|---|---|---|---|
Amphibian
| 3,663
| 1,161
| 1,161
|
ArtificialSatellite
| 1,801
| 72
| 72
|
Artwork
| 3,112
| 245
| 245
|
Award
| 3,380
| 384
| 384
|
BasketballTeam
| 928
| 166
| 166
|
Case
| 2,474
| 380
| 380
|
ChristianBishop
| 5,363
| 494
| 494
|
ClericalAdministrativeRegion
| 2,547
| 190
| 190
|
Country
| 2,791
| 291
| 291
|
Device
| 6,933
| 658
| 658
|
Drug
| 5,356
| 157
| 157
|
Election
| 6,565
| 727
| 727
|
Enzyme
| 3,917
| 48
| 48
|
EthnicGroup
| 4,317
| 946
| 946
|
FootballLeagueSeason
| 4,457
| 280
| 280
|
FootballMatch
| 1,999
| 53
| 53
|
Galaxy
| 555
| 17
| 17
|
GivenName
| 3,021
| 154
| 154
|
GovernmentAgency
| 3,977
| 571
| 571
|
HistoricBuilding
| 5,064
| 512
| 512
|
Hospital
| 2,424
| 257
| 257
|
Legislature
| 1,314
| 216
| 216
|
Magazine
| 4,005
| 274
| 274
|
MemberOfParliament
| 5,774
| 503
| 503
|
Monarch
| 2,033
| 242
| 242
|
MotorsportSeason
| 1,465
| 388
| 388
|
Museum
| 3,982
| 305
| 305
|
NCAATeamSeason
| 5,619
| 34
| 34
|
NationalFootballLeagueSeason
| 3,003
| 10
| 10
|
NaturalEvent
| 970
| 51
| 51
|
Noble
| 3,609
| 364
| 364
|
PoliticalParty
| 5,254
| 495
| 495
|
Race
| 2,382
| 175
| 175
|
RailwayLine
| 2,189
| 298
| 298
|
Reptile
| 666
| 819
| 562
|
RugbyLeague
| 418
| 58
| 58
|
ShoppingMall
| 201
| 227
| 159
|
SoccerClubSeason
| 1,197
| 51
| 51
|
SoccerLeague
| 1,315
| 238
| 238
|
SoccerTournament
| 2,714
| 290
| 290
|
Song
| 5,726
| 440
| 440
|
SportFacility
| 6,392
| 672
| 672
|
SportsLeague
| 3,106
| 481
| 481
|
Stadium
| 5,105
| 619
| 619
|
TelevisionStation
| 6,752
| 1,152
| 1,152
|
TennisTournament
| 324
| 27
| 27
|
Tournament
| 4,858
| 459
| 459
|
UnitOfWork
| 2,483
| 380
| 380
|
Venue
| 4,079
| 384
| 384
|
Wrestler
| 3,150
| 464
| 464
|
Learning High-Quality and General-Purpose Phrase Representations.
Lihu Chen, Gaël Varoquaux, Fabian M. Suchanek.
Accepted by EACL Findings 2024
Our PEARL Benchmark contains 9 phrase-level datasets of five types of tasks, which cover both the field of data science and natural language processing.
| - | PPDB | PPDB filtered | Turney | BIRD | YAGO | UMLS | CoNLL | BC5CDR | AutoFJ |
|---|---|---|---|---|---|---|---|---|---|
| Task | Paraphrase Classification | Paraphrase Classification | Phrase Similarity | Phrase Similarity | Entity Retrieval | Entity Retrieval | Entity Clustering | Entity Clustering | Fuzzy Join |
| Samples | 23.4k | 15.5k | 2.2k | 3.4k | 10k | 10k | 5.0k | 9.7k | 50 subsets |
| Averaged Length | 2.5 | 2.0 | 1.2 | 1.7 | 3.3 | 4.1 | 1.5 | 1.4 | 3.8 |
| Metric | Acc | Acc | Acc | Pearson | Top-1 Acc | Top-1 Acc | NMI | NMI | Acc |
from datasets import load_dataset
turney_dataset = load_dataset("Lihuchen/pearl_benchmark", "turney", split="test")
We offer a python script to evaluate your model: eval.py
python eval.py -batch_size 32
@article{chen2024learning,
title={Learning High-Quality and General-Purpose Phrase Representations},
author={Chen, Lihu and Varoquaux, Ga{\"e}l and Suchanek, Fabian M},
journal={arXiv preprint arXiv:2401.10407},
year={2024}
}