Dataset Viewer
Auto-converted to Parquet Duplicate
word_keyboard_response.keys
stringclasses
6 values
up
return
down
return
right
left
0
up
down
return
right
left
return
0
return
down
return
up
return
0
right
left
down
up
right
0
up
left
down
return
right
0
down
up
right
0
down
left
right
up
down
0
down
left
right
up
down
0
right
return
return
return
right
left
right
0
down
up
right
up
return
down
0
up
right
left
0
down
right
down
up
left
0
up
return
down
return
left
right
return
up
0
down
left
right
0
down
right
left
up
0
up
right
left
down
up
right
0
up
right
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

🧠✨ Cueless EEG Imagined Speech for Subject Identification

This repository hosts the dataset introduced in the paper: “Cueless EEG Imagined Speech for Subject Identification: Dataset and Benchmarks.”

🥳 Our work has been accepted by IEEE Transactions on Biometrics, Behavior, and Identity Science (T-BIOM) 🎉.

🧪💻 Code & Experiments

All codes and experiments are available at 👉 https://github.com/Alidr79/cueless_EEG_subject_identification


📥 Downloading the Dataset

You can download the full dataset (~6.3 GB) using the Hugging Face CLI.

1. Install the HF CLI

curl -LsSf https://hf.co/cli/install.sh | bash

2. Download the dataset to a chosen directory

mkdir -p cueless_EEG_data

hf download Alidr79/cueless_EEG_subject_identification \
    --repo-type dataset \
    --local-dir cueless_EEG_data 

3. Verify the download

du -sh cueless_EEG_data

📝 Citation

If you use this dataset in your research, please cite:

Paper

@ARTICLE{11251347,
  author={Derakhshesh, Ali and Dehghanian, Zahra and Ebrahimpour, Reza and Rabiee, Hamid R.},
  journal={IEEE Transactions on Biometrics, Behavior, and Identity Science}, 
  title={Cueless EEG Imagined Speech for Subject Identification: Dataset and Benchmarks}, 
  year={2025},
  volume={},
  number={},
  pages={1-1},
  keywords={biometric system;electroencephalogram;Imagined speech;machine learning},
  doi={10.1109/TBIOM.2025.3634273}
}
Downloads last month
351