OrbMol: Extending Orb to Molecular Systems
Built on the Orb-v3 architecture, OrbMol is a universal interatomic potential trained on the Open Molecules 2025 (OMol25) datasetโover 100M high-accuracy DFT calculations (ฯB97M-V/def2-TZVPD).
Unlike its predecessors, OrbMol accepts total charge and spin multiplicity, enabling it to accurately model open-shell, ionic electrolytes, metal complexes and biomolecules.
Model checkpoints
There are two model checkpoints available:
- OrbMol: conservative default model
- OrbMol-direct: direct variant (i.e. forces are not the exact gradient of the energy)
Both models use a 6 ร radius cutoff with "infinite" (120) max neighbours in the neighborlist computation.
| Name | Checkpoint File | Hash Prefix |
|---|---|---|
| OrbMol | orb-v3-conservative-omol-20250820.safetensors |
dc9964d66d54 |
| OrbMol-direct | orb-v3-direct-omol-20250820.safetensors |
โ |
๐ Quick Start
Head to the orb-models Github repository for complete instructions. In a nutshell:
pip install orb-models
pip install --extra-index-url=https://pypi.nvidia.com "cuml-cu11==25.2.*" # For cuda versions >=11.4, <11.8
pip install --extra-index-url=https://pypi.nvidia.com "cuml-cu12==25.2.*" # For cuda versions >=12.0, <13.0
import ase
from ase.build import molecule
from orb_models.forcefield import atomic_system, pretrained
from orb_models.forcefield.base import batch_graphs
device = "cpu" # or device="cuda"
orbff = pretrained.orb_v3_conservative_omol(
device=device,
precision="float32-high", # or "float32-highest" / "float64
)
atoms = molecule("C6H6")
atoms.info["charge"] = 0 # total charge
atoms.info["spin"] = 1 # spin multiplicity
graph = atomic_system.ase_atoms_to_atom_graphs(atoms, orbff.system_config, device=device)
result = orbff.predict(graph, split=False)
Support
If you run into any issues feel free to post your questions or comments on our Github Issues page.
License
ORB models are licensed under the Apache License, Version 2.0. Please see the LICENSE file for details.
Citation
If you use this work, please cite:
@misc{rhodes2025orbv3atomisticsimulationscale,
title={Orb-v3: atomistic simulation at scale},
author={Benjamin Rhodes and Sander Vandenhaute and Vaidotas ล imkus and James Gin and Jonathan Godwin and Tim Duignan and Mark Neumann},
year={2025},
eprint={2504.06231},
archivePrefix={arXiv},
primaryClass={cond-mat.mtrl-sci},
url={https://arxiv.org/abs/2504.06231},
}
@misc{neumann2024orbfastscalableneural,
title={Orb: A Fast, Scalable Neural Network Potential},
author={Mark Neumann and James Gin and Benjamin Rhodes and Steven Bennett and Zhiyi Li and Hitarth Choubisa and Arthur Hussey and Jonathan Godwin},
year={2024},
eprint={2410.22570},
archivePrefix={arXiv},
primaryClass={cond-mat.mtrl-sci},
url={https://arxiv.org/abs/2410.22570},
}