BioHackathon_Lipids-tapt_ulmfit-LR_2e-05

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0089
  • Accuracy: 0.7719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1173 1.0 29 1.0719 0.7634
1.1305 2.0 58 1.0794 0.7616
1.1273 3.0 87 1.0206 0.7735
1.1235 4.0 116 1.0500 0.7668
1.1148 5.0 145 1.0672 0.7624
1.0937 6.0 174 1.0456 0.7704
1.0873 7.0 203 1.0653 0.7674
1.0914 8.0 232 1.0253 0.7688
1.1042 9.0 261 1.0706 0.7635
1.0698 10.0 290 1.0236 0.7744
1.0837 11.0 319 1.0653 0.7632
1.0862 12.0 348 1.0166 0.7745
1.0699 13.0 377 1.0374 0.7684
1.0775 14.0 406 1.0149 0.7752
1.0512 15.0 435 1.0393 0.7689
1.0781 16.0 464 1.0280 0.7692
1.0683 17.0 493 1.0156 0.7726
1.0821 18.0 522 1.0366 0.7750
1.0543 19.0 551 1.0215 0.7729
1.0674 20.0 580 1.0010 0.7736
1.0628 21.0 609 1.0159 0.7682
1.0622 22.0 638 1.0183 0.7691
1.0399 23.0 667 1.0685 0.7654
1.0301 24.0 696 1.0431 0.7718
1.0517 25.0 725 1.0105 0.7746
1.0529 26.0 754 0.9985 0.7732
1.0448 27.0 783 1.0250 0.7685
1.036 28.0 812 1.0129 0.7674
1.0334 29.0 841 1.0039 0.7743
1.0279 30.0 870 1.0235 0.7717
1.031 31.0 899 1.0073 0.7719
1.0038 32.0 928 1.0215 0.7662
1.0077 33.0 957 1.0471 0.7674
1.0056 34.0 986 1.0235 0.7707
1.0017 35.0 1015 0.9899 0.7729
0.9885 36.0 1044 1.0062 0.7753
1.0057 37.0 1073 1.0204 0.7703
1.0062 38.0 1102 1.0028 0.7709
0.9956 39.0 1131 1.0575 0.7602
1.0014 40.0 1160 1.0122 0.7745
0.997 41.0 1189 1.0124 0.7721
0.9741 42.0 1218 1.0455 0.7637
0.9816 43.0 1247 1.0390 0.7677
0.9899 44.0 1276 1.0734 0.7593
0.9707 45.0 1305 1.0267 0.7700
0.9705 46.0 1334 1.0408 0.7726
0.9663 47.0 1363 1.0350 0.7679
0.9914 48.0 1392 1.0182 0.7686
0.9909 49.0 1421 1.0218 0.7664
0.9678 50.0 1450 1.0417 0.7709
0.964 51.0 1479 1.0112 0.7733
0.9655 52.0 1508 1.0314 0.7666
0.9735 53.0 1537 1.0200 0.7702
0.9624 54.0 1566 1.0394 0.7682
0.951 55.0 1595 1.0211 0.7697
0.9664 56.0 1624 1.0353 0.7706
0.9449 57.0 1653 1.0195 0.7726
0.9464 58.0 1682 1.0432 0.7644
0.9477 59.0 1711 1.0151 0.7701
0.9381 60.0 1740 0.9901 0.7765
0.9442 61.0 1769 1.0175 0.7673
0.9364 62.0 1798 1.0653 0.7639
0.9405 63.0 1827 1.0308 0.7651
0.9498 64.0 1856 1.0132 0.7727
0.9372 65.0 1885 1.0252 0.7729
0.9356 66.0 1914 1.0254 0.7664
0.9383 67.0 1943 0.9812 0.7742
0.9336 68.0 1972 1.0125 0.7712
0.9362 69.0 2001 1.0397 0.7631
0.9273 70.0 2030 1.0128 0.7671
0.933 71.0 2059 1.0381 0.7659
0.9418 72.0 2088 1.0013 0.7722
0.952 73.0 2117 1.0078 0.7724
0.9204 74.0 2146 1.0435 0.7721
0.9186 75.0 2175 1.0336 0.7704
0.9303 76.0 2204 1.0415 0.7704
0.9376 77.0 2233 1.0153 0.7772
0.9168 78.0 2262 1.0177 0.7689
0.9211 79.0 2291 1.0094 0.7752
0.9527 80.0 2320 0.9772 0.7762
0.9262 81.0 2349 1.0733 0.7675
0.9366 82.0 2378 1.0236 0.7707
0.9174 83.0 2407 1.0249 0.7679
0.9156 84.0 2436 1.0120 0.7689
0.933 85.0 2465 1.0519 0.7647
0.9294 86.0 2494 1.0183 0.7701
0.928 87.0 2523 1.0252 0.7660
0.9202 88.0 2552 1.0469 0.7644
0.9081 89.0 2581 1.0259 0.7707
0.9164 90.0 2610 1.0298 0.7666
0.9215 91.0 2639 1.0293 0.7710
0.9258 92.0 2668 1.0461 0.7634
0.9052 93.0 2697 1.0126 0.7721
0.9322 94.0 2726 1.0077 0.7741
0.9144 95.0 2755 1.0300 0.7671
0.9204 96.0 2784 1.0631 0.7628
0.9323 96.5614 2800 1.0089 0.7719

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/BioHackathon_Lipids-tapt_ulmfit-LR_2e-05