learning_curve_overfit
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4524
- Accuracy: 0.8168
- F1: 0.8688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.6101 | 0.2174 | 50 | 0.6364 | 0.7279 | 0.8177 |
| 0.5008 | 0.4348 | 100 | 0.5460 | 0.7525 | 0.8439 |
| 0.4883 | 0.6522 | 150 | 0.4691 | 0.7966 | 0.8642 |
| 0.4098 | 0.8696 | 200 | 0.4353 | 0.8137 | 0.8707 |
| 0.2658 | 1.0870 | 250 | 0.4194 | 0.8333 | 0.8736 |
| 0.3686 | 1.3043 | 300 | 0.4500 | 0.8113 | 0.8723 |
| 0.3576 | 1.5217 | 350 | 0.3881 | 0.8505 | 0.8950 |
| 0.2184 | 1.7391 | 400 | 0.5283 | 0.8113 | 0.8752 |
| 0.3837 | 1.9565 | 450 | 0.3702 | 0.8431 | 0.8832 |
| 0.1495 | 2.1739 | 500 | 0.6471 | 0.8480 | 0.8970 |
| 0.2161 | 2.3913 | 550 | 0.5114 | 0.8358 | 0.8757 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.7.1+cu128
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 8
Model tree for Jiebro02/learning_curve_overfit
Base model
google-bert/bert-base-uncased