roberta-base-qqp

This model is a fine-tuned version of roberta-base on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4435
  • Accuracy: 0.9153
  • F1: 0.8867
  • Combined Score: 0.9010

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.2751 1.0 22741 0.3057 0.8905 0.8512 0.8709
0.2443 2.0 45482 0.2530 0.9005 0.8710 0.8857
0.2157 3.0 68223 0.2643 0.9070 0.8769 0.8919
0.1838 4.0 90964 0.2806 0.9109 0.8815 0.8962
0.146 5.0 113705 0.3277 0.9113 0.8809 0.8961
0.1262 6.0 136446 0.3939 0.9113 0.8812 0.8962
0.0867 7.0 159187 0.4435 0.9153 0.8867 0.9010
0.0757 8.0 181928 0.4812 0.9147 0.8844 0.8996
0.0479 9.0 204669 0.5081 0.9151 0.8871 0.9011
0.0379 10.0 227410 0.5647 0.9149 0.8858 0.9003

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
17
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for JeremiahZ/roberta-base-qqp

Finetunes
1 model

Dataset used to train JeremiahZ/roberta-base-qqp

Evaluation results