|
|
--- |
|
|
license: apache-2.0 |
|
|
--- |
|
|
# AttriCtrl Numerical Image Generation Control Model |
|
|
|
|
|
## Introduction |
|
|
|
|
|
AttriCtrl enables fine-grained control of numerical image attributes during image generation. |
|
|
|
|
|
For more details, please refer to our paper: [AttriCtrl: Fine-Grained Control of Aesthetic Attribute Intensity in Diffusion Models](https://arxiv.org/abs/2508.02151) |
|
|
|
|
|
## Result Demonstration |
|
|
|
|
|
### Brightness |
|
|
|
|
|
|scale = 0.1|scale = 0.3|scale = 0.5|scale = 0.7|scale = 0.9| |
|
|
|-|-|-|-|-| |
|
|
|||||| |
|
|
|
|
|
### Detail |
|
|
|
|
|
|scale = 0.1|scale = 0.3|scale = 0.5|scale = 0.7|scale = 0.9| |
|
|
|-|-|-|-|-| |
|
|
|||||| |
|
|
|
|
|
### Realism |
|
|
|
|
|
|scale = 0.1|scale = 0.3|scale = 0.5|scale = 0.7|scale = 0.9| |
|
|
|-|-|-|-|-| |
|
|
|||||| |
|
|
|
|
|
## Inference Code |
|
|
|
|
|
```shell |
|
|
git clone https://github.com/modelscope/DiffSynth-Studio.git |
|
|
cd DiffSynth-Studio |
|
|
pip install -e . |
|
|
``` |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig |
|
|
``` |
|
|
|
|
|
```python |
|
|
pipe = FluxImagePipeline.from_pretrained( |
|
|
torch_dtype=torch.bfloat16, |
|
|
device="cuda", |
|
|
model_configs=[ |
|
|
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"), |
|
|
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), |
|
|
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), |
|
|
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), |
|
|
ModelConfig(model_id="DiffSynth-Studio/AttriCtrl-FLUX.1-Dev", origin_file_pattern="models/detail.safetensors") |
|
|
], |
|
|
) |
|
|
|
|
|
for i in [0.1, 0.3, 0.5, 0.7, 0.9]: |
|
|
image = pipe(prompt="a cat on the beach", seed=2, value_controller_inputs=[i]) |
|
|
image.save(f"value_control_{i}.jpg") |
|
|
``` |