Spaces:
Paused
Paused
| import openai | |
| import tiktoken | |
| import json | |
| import os | |
| openai.api_key = os.getenv('API_KEY') | |
| def ask(question, history): | |
| history = history + [question] | |
| try: | |
| response = openai.ChatCompletion.create( | |
| model="gpt-3.5-turbo", | |
| messages=forget_long_term([ | |
| {"role":"user" if i%2==0 else "assistant", "content":content} | |
| for i,content in enumerate(history) | |
| ]) | |
| )["choices"][0]["message"]["content"] | |
| while response.startswith("\n"): | |
| response = response[1:] | |
| except Exception as e: | |
| print(e) | |
| response = 'Timeout! Please wait a few minutes and retry' | |
| history = history + [response] | |
| with open("dialogue.txt", "a", encoding='utf-8') as f: | |
| f.write(json.dumps(history, ensure_ascii=False)+"\n") | |
| return history | |
| def forget_long_term(messages, max_num_tokens=4000): | |
| def num_tokens_from_messages(messages, model="gpt-3.5-turbo"): | |
| """Returns the number of tokens used by a list of messages.""" | |
| try: | |
| encoding = tiktoken.encoding_for_model(model) | |
| except KeyError: | |
| encoding = tiktoken.get_encoding("cl100k_base") | |
| if model == "gpt-3.5-turbo": # note: future models may deviate from this | |
| num_tokens = 0 | |
| for message in messages: | |
| num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n | |
| for key, value in message.items(): | |
| num_tokens += len(encoding.encode(value)) | |
| if key == "name": # if there's a name, the role is omitted | |
| num_tokens += -1 # role is always required and always 1 token | |
| num_tokens += 2 # every reply is primed with <im_start>assistant | |
| return num_tokens | |
| else: | |
| raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}. | |
| See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""") | |
| while num_tokens_from_messages(messages)>max_num_tokens: | |
| messages = messages[1:] | |
| return messages | |
| import gradio as gr | |
| def predict(question, history=[]): | |
| history = ask(question, history) | |
| response = [(history[i].replace("\n","<br>"),history[i+1].replace("\n","<br>")) for i in range(0,len(history)-1,2)] | |
| return "", history, response | |
| with gr.Blocks() as demo: | |
| examples = [ | |
| ['200字介绍一下凯旋门:'], | |
| ['网上购物有什么小窍门?'], | |
| ['补全下述对三亚的介绍:\n三亚位于海南岛的最南端,是'], | |
| ['将这句文言文翻译成英语:"逝者如斯夫,不舍昼夜。"'], | |
| ['Question: What\'s the best winter resort city? User: A 10-year professional traveler. Answer: '], | |
| ['How to help my child to make friends with his classmates? answer this question step by step:'], | |
| ['polish the following statement for a paper: In this section, we perform case study to give a more intuitive demonstration of our proposed strategies and corresponding explanation.'], | |
| ] | |
| gr.Markdown( | |
| """ | |
| 朋友你好, | |
| 这是我利用[gradio](https://gradio.app/creating-a-chatbot/)编写的一个小网页,用于以网页的形式给大家分享ChatGPT请求服务,希望你玩的开心 | |
| p.s. 响应时间和问题复杂程度相关,<del>一般能在10~20秒内出结果</del>用了新的api已经提速到大约5秒内了 | |
| """) | |
| chatbot = gr.Chatbot() | |
| state = gr.State([]) | |
| with gr.Row(): | |
| txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) | |
| txt.submit(predict, [txt, state], [txt, state, chatbot]) | |
| with gr.Row(): | |
| gen = gr.Button("Submit") | |
| clr = gr.Button("Clear") | |
| gen.click(fn=predict, inputs=[txt, state], outputs=[txt, state, chatbot]) | |
| def clear(value): | |
| return [], [] | |
| clr.click(clear, inputs=clr, outputs=[chatbot, state]) | |
| gr_examples = gr.Examples(examples=examples, inputs=txt) | |
| demo.launch() |