Spaces:
Sleeping
Sleeping
Update svm_model.py
Browse files- svm_model.py +20 -5
svm_model.py
CHANGED
|
@@ -15,7 +15,7 @@ except AttributeError:
|
|
| 15 |
else:
|
| 16 |
ssl._create_default_https_context = _create_unverified_https_context
|
| 17 |
# print(f"nltk version: {nltk.__version__}")
|
| 18 |
-
nltk.download('stopwords')
|
| 19 |
|
| 20 |
#
|
| 21 |
class SVMModel:
|
|
@@ -89,13 +89,21 @@ class SVM:
|
|
| 89 |
self.data_folder = '.'
|
| 90 |
|
| 91 |
print(f"Start loading data")
|
| 92 |
-
self._load_data()
|
| 93 |
|
| 94 |
print(f"Setting vectorizer")
|
| 95 |
-
self.vectorizer = TfidfVectorizer(max_features=4000, min_df=7, max_df=0.8, stop_words=stopwords.words('english'))
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
# self.setup_model()
|
| 101 |
self.setup_model_ours()
|
|
@@ -132,8 +140,15 @@ class SVM:
|
|
| 132 |
|
| 133 |
def _preprocess_data(self, ):
|
| 134 |
self.X_train = self.vectorizer.fit_transform(self.x_train).toarray()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
self.X_test = self.vectorizer.transform(self.x_test).toarray()
|
| 136 |
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
|
|
|
|
| 15 |
else:
|
| 16 |
ssl._create_default_https_context = _create_unverified_https_context
|
| 17 |
# print(f"nltk version: {nltk.__version__}")
|
| 18 |
+
# nltk.download('stopwords')
|
| 19 |
|
| 20 |
#
|
| 21 |
class SVMModel:
|
|
|
|
| 89 |
self.data_folder = '.'
|
| 90 |
|
| 91 |
print(f"Start loading data")
|
| 92 |
+
# self._load_data()
|
| 93 |
|
| 94 |
print(f"Setting vectorizer")
|
| 95 |
+
# self.vectorizer = TfidfVectorizer(max_features=4000, min_df=7, max_df=0.8, stop_words=stopwords.words('english'))
|
| 96 |
+
# parmas_dict = np.load("svm_vectorizer.npy", allow_pickle=True).item()
|
| 97 |
+
# print(f"parmas_dict: {parmas_dict.keys()}")
|
| 98 |
|
| 99 |
+
|
| 100 |
+
# self.vectorizer.set_params(**parmas_dict)
|
| 101 |
+
|
| 102 |
+
import pickle
|
| 103 |
+
self.vectorizer = pickle.load(open("tfidf.pickle", "rb"))
|
| 104 |
+
|
| 105 |
+
# print(f"Start preprocessing data")
|
| 106 |
+
# self._preprocess_data()
|
| 107 |
|
| 108 |
# self.setup_model()
|
| 109 |
self.setup_model_ours()
|
|
|
|
| 140 |
|
| 141 |
def _preprocess_data(self, ):
|
| 142 |
self.X_train = self.vectorizer.fit_transform(self.x_train).toarray()
|
| 143 |
+
|
| 144 |
+
import pickle
|
| 145 |
+
# self.vectorizer_params = self.vectorizer.get_params()
|
| 146 |
+
# np.save("svm_vectorizer.npy", self.vectorizer_params)
|
| 147 |
+
pickle.dump(self.vectorizer, open("tfidf.pickle", "wb"))
|
| 148 |
+
|
| 149 |
self.X_test = self.vectorizer.transform(self.x_test).toarray()
|
| 150 |
|
| 151 |
+
# self.X_train = self.vectorizer.transform
|
| 152 |
|
| 153 |
|
| 154 |
|