ttzzs's picture
Deploy Chronos2 Forecasting API v3.0.0 with new SOLID architecture
c40c447 verified
raw
history blame
6.04 kB
"""
Casos de uso para Forecasting.
Implementan la l贸gica de aplicaci贸n para pron贸sticos,
orquestando servicios de dominio y transformando DTOs.
"""
from typing import List
from app.domain.services.forecast_service import ForecastService
from app.domain.models.time_series import TimeSeries
from app.domain.models.forecast_config import ForecastConfig
from app.application.dtos.forecast_dtos import (
ForecastInputDTO,
ForecastOutputDTO,
MultiForecastInputDTO,
MultiForecastOutputDTO,
SeriesInputDTO
)
from app.utils.logger import setup_logger
logger = setup_logger(__name__)
class ForecastUnivariateUseCase:
"""
Caso de uso: Pron贸stico Univariado.
Responsabilidad: Ejecutar pron贸stico para una serie temporal 煤nica.
"""
def __init__(self, forecast_service: ForecastService):
"""
Inicializa el caso de uso.
Args:
forecast_service: Servicio de dominio para forecasting
"""
self.forecast_service = forecast_service
logger.info("ForecastUnivariateUseCase initialized")
def execute(self, input_dto: ForecastInputDTO) -> ForecastOutputDTO:
"""
Ejecuta el caso de uso.
Args:
input_dto: Datos de entrada validados
Returns:
ForecastOutputDTO: Resultado del pron贸stico
Raises:
ValueError: Si los datos son inv谩lidos
RuntimeError: Si falla el pron贸stico
"""
logger.info(f"Executing forecast for series: {input_dto.series_id}")
# Validar entrada
input_dto.validate()
# Convertir DTO a modelos de dominio
series = TimeSeries(
values=input_dto.values,
timestamps=input_dto.timestamps,
series_id=input_dto.series_id,
freq=input_dto.freq
)
config = ForecastConfig(
prediction_length=input_dto.prediction_length,
quantile_levels=input_dto.quantile_levels,
freq=input_dto.freq
)
# Ejecutar servicio de dominio
try:
result = self.forecast_service.forecast_univariate(series, config)
logger.info(f"Forecast completed: {len(result.timestamps)} periods")
except Exception as e:
logger.error(f"Forecast failed: {e}", exc_info=True)
raise RuntimeError(f"Forecast execution failed: {str(e)}") from e
# Convertir resultado a DTO
output_dto = ForecastOutputDTO(
timestamps=result.timestamps,
median=result.median,
quantiles=result.quantiles,
series_id=result.series_id,
metadata={
"prediction_length": config.prediction_length,
"freq": config.freq,
"context_length": len(series.values)
}
)
return output_dto
class ForecastMultiSeriesUseCase:
"""
Caso de uso: Pron贸stico Multi-Series.
Responsabilidad: Ejecutar pron贸sticos para m煤ltiples series.
"""
def __init__(self, forecast_service: ForecastService):
"""
Inicializa el caso de uso.
Args:
forecast_service: Servicio de dominio para forecasting
"""
self.forecast_service = forecast_service
logger.info("ForecastMultiSeriesUseCase initialized")
def execute(self, input_dto: MultiForecastInputDTO) -> MultiForecastOutputDTO:
"""
Ejecuta el caso de uso para m煤ltiples series.
Args:
input_dto: Datos de entrada con m煤ltiples series
Returns:
MultiForecastOutputDTO: Resultados de todos los pron贸sticos
"""
logger.info(f"Executing forecast for {len(input_dto.series_list)} series")
# Validar entrada
input_dto.validate()
# Configuraci贸n compartida
config = ForecastConfig(
prediction_length=input_dto.prediction_length,
quantile_levels=input_dto.quantile_levels,
freq=input_dto.freq
)
# Convertir DTOs a modelos de dominio
time_series_list: List[TimeSeries] = []
for series_dto in input_dto.series_list:
series = TimeSeries(
values=series_dto.values,
timestamps=series_dto.timestamps,
series_id=series_dto.series_id,
freq=input_dto.freq
)
time_series_list.append(series)
# Ejecutar servicio de dominio
results = []
successful = 0
failed = 0
for ts in time_series_list:
try:
result = self.forecast_service.forecast_univariate(ts, config)
output_dto = ForecastOutputDTO(
timestamps=result.timestamps,
median=result.median,
quantiles=result.quantiles,
series_id=result.series_id,
metadata={
"prediction_length": config.prediction_length,
"freq": config.freq,
"context_length": len(ts.values)
}
)
results.append(output_dto)
successful += 1
except Exception as e:
logger.error(f"Forecast failed for series {ts.series_id}: {e}")
failed += 1
# Continuar con las siguientes series
logger.info(f"Multi-series forecast completed: {successful} successful, {failed} failed")
# Crear DTO de salida
multi_output = MultiForecastOutputDTO(
results=results,
total_series=len(input_dto.series_list),
successful=successful,
failed=failed
)
return multi_output