Spaces:
Build error
Build error
File size: 22,172 Bytes
c40c447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
import os
from typing import List, Dict, Optional
import numpy as np
import pandas as pd
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel, Field
from chronos import Chronos2Pipeline
# =========================
# Configuraci贸n del modelo
# =========================
MODEL_ID = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-2")
DEVICE_MAP = os.getenv("DEVICE_MAP", "cpu") # "cpu" o "cuda"
app = FastAPI(
title="Chronos-2 Universal Forecasting API + Excel Add-in",
description=(
"Servidor para pron贸sticos con Chronos-2: univariante, "
"multivariante, covariables, escenarios, anomal铆as y backtesting. "
"Incluye Excel Add-in v2.1.0 con archivos est谩ticos."
),
version="2.1.0",
)
# Configurar CORS para Excel Add-in
app.add_middleware(
CORSMiddleware,
allow_origins=[
"https://localhost:3001",
"https://localhost:3000",
"https://ttzzs-chronos2-excel-forecasting-api.hf.space",
"*" # Permitir todos los or铆genes para Office Add-ins
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Carga 煤nica del modelo al iniciar el proceso
pipeline = Chronos2Pipeline.from_pretrained(MODEL_ID, device_map=DEVICE_MAP)
# =========================
# Archivos est谩ticos para Excel Add-in
# =========================
# Montar directorios est谩ticos si existen
if os.path.exists("static"):
app.mount("/assets", StaticFiles(directory="static/assets"), name="assets")
app.mount("/taskpane", StaticFiles(directory="static/taskpane"), name="taskpane")
app.mount("/commands", StaticFiles(directory="static/commands"), name="commands")
# Endpoint para manifest.xml
@app.get("/manifest.xml", response_class=FileResponse)
async def get_manifest():
"""Devuelve el manifest.xml del Excel Add-in"""
return FileResponse("static/manifest.xml", media_type="application/xml")
@app.get("/", tags=["Info"])
async def root_with_addon():
"""Informaci贸n del API + Add-in"""
return {
"name": "Chronos-2 Forecasting API",
"version": "2.1.0",
"model": MODEL_ID,
"endpoints": {
"api": [
"/health",
"/forecast_univariate",
"/forecast_multi_id",
"/forecast_with_covariates",
"/forecast_multivariate",
"/forecast_scenarios",
"/detect_anomalies",
"/backtest_simple"
],
"add_in": [
"/manifest.xml",
"/taskpane/taskpane.html",
"/assets/icon-*.png"
]
},
"docs": "/docs",
"excel_add_in": {
"manifest_url": "https://ttzzs-chronos2-excel-forecasting-api.hf.space/manifest.xml",
"version": "2.1.0",
"features": [
"Univariate Forecast",
"Multi-Series Forecast",
"Forecast with Covariates",
"Scenario Analysis",
"Multivariate Forecast",
"Anomaly Detection",
"Backtest"
]
}
}
else:
@app.get("/", tags=["Info"])
async def root_api_only():
"""Informaci贸n del API (sin Add-in)"""
return {
"name": "Chronos-2 Forecasting API",
"version": "2.1.0",
"model": MODEL_ID,
"docs": "/docs"
}
# =========================
# Modelos Pydantic comunes
# =========================
class BaseForecastConfig(BaseModel):
prediction_length: int = Field(
7, description="Horizonte de predicci贸n (n煤mero de pasos futuros)"
)
quantile_levels: List[float] = Field(
default_factory=lambda: [0.1, 0.5, 0.9],
description="Cuantiles para el pron贸stico probabil铆stico",
)
start_timestamp: Optional[str] = Field(
default=None,
description=(
"Fecha/hora inicial del hist贸rico (formato ISO). "
"Si no se especifica, se usan 铆ndices enteros."
),
)
freq: str = Field(
"D",
description="Frecuencia temporal (p.ej. 'D' diario, 'H' horario, 'W' semanal...).",
)
class UnivariateSeries(BaseModel):
values: List[float]
class MultiSeriesItem(BaseModel):
series_id: str
values: List[float]
class CovariatePoint(BaseModel):
"""
Punto temporal usado tanto para contexto (hist贸rico) como para covariables futuras.
"""
timestamp: Optional[str] = None # opcional si se usan 铆ndices enteros
id: Optional[str] = None # id de serie, por defecto 'series_0'
target: Optional[float] = None # valor de la variable objetivo (hist贸rico)
covariates: Dict[str, float] = Field(
default_factory=dict,
description="Nombre -> valor de cada covariable din谩mica.",
)
# =========================
# 1) Healthcheck
# =========================
@app.get("/health")
def health():
"""
Devuelve informaci贸n b谩sica del estado del servidor y el modelo cargado.
"""
return {
"status": "ok",
"model_id": MODEL_ID,
"device_map": DEVICE_MAP,
}
# =========================
# 2) Pron贸stico univariante
# =========================
class ForecastUnivariateRequest(BaseForecastConfig):
series: UnivariateSeries
class ForecastUnivariateResponse(BaseModel):
timestamps: List[str]
median: List[float]
quantiles: Dict[str, List[float]] # "0.1" -> [..], "0.9" -> [..]
@app.post("/forecast_univariate", response_model=ForecastUnivariateResponse)
def forecast_univariate(req: ForecastUnivariateRequest):
"""
Pron贸stico para una sola serie temporal (univariante, sin covariables).
Pensado para uso directo desde Excel u otras herramientas sencillas.
"""
values = req.series.values
n = len(values)
if n == 0:
raise HTTPException(status_code=400, detail="La serie no puede estar vac铆a.")
# Construimos contexto como DataFrame largo (id, timestamp, target)
if req.start_timestamp:
timestamps = pd.date_range(
start=pd.to_datetime(req.start_timestamp),
periods=n,
freq=req.freq,
)
else:
timestamps = pd.RangeIndex(start=0, stop=n, step=1)
context_df = pd.DataFrame(
{
"id": ["series_0"] * n,
"timestamp": timestamps,
"target": values,
}
)
pred_df = pipeline.predict_df(
context_df,
prediction_length=req.prediction_length,
quantile_levels=req.quantile_levels,
id_column="id",
timestamp_column="timestamp",
target="target",
)
pred_df = pred_df.sort_values("timestamp")
timestamps_out = pred_df["timestamp"].astype(str).tolist()
median = pred_df["predictions"].astype(float).tolist()
quantiles_dict: Dict[str, List[float]] = {}
for q in req.quantile_levels:
key = f"{q:.3g}"
if key in pred_df.columns:
quantiles_dict[key] = pred_df[key].astype(float).tolist()
return ForecastUnivariateResponse(
timestamps=timestamps_out,
median=median,
quantiles=quantiles_dict,
)
# =========================
# 3) Multi-serie (multi-id)
# =========================
class ForecastMultiSeriesRequest(BaseForecastConfig):
series_list: List[MultiSeriesItem]
class SeriesForecast(BaseModel):
series_id: str
timestamps: List[str]
median: List[float]
quantiles: Dict[str, List[float]]
class ForecastMultiSeriesResponse(BaseModel):
forecasts: List[SeriesForecast]
@app.post("/forecast_multi_id", response_model=ForecastMultiSeriesResponse)
def forecast_multi_id(req: ForecastMultiSeriesRequest):
"""
Pron贸stico para m煤ltiples series (por ejemplo, varios SKU o tiendas).
"""
if not req.series_list:
raise HTTPException(status_code=400, detail="Debes enviar al menos una serie.")
frames = []
for item in req.series_list:
n = len(item.values)
if n == 0:
continue
if req.start_timestamp:
timestamps = pd.date_range(
start=pd.to_datetime(req.start_timestamp),
periods=n,
freq=req.freq,
)
else:
timestamps = pd.RangeIndex(start=0, stop=n, step=1)
frames.append(
pd.DataFrame(
{
"id": [item.series_id] * n,
"timestamp": timestamps,
"target": item.values,
}
)
)
if not frames:
raise HTTPException(status_code=400, detail="Todas las series est谩n vac铆as.")
context_df = pd.concat(frames, ignore_index=True)
pred_df = pipeline.predict_df(
context_df,
prediction_length=req.prediction_length,
quantile_levels=req.quantile_levels,
id_column="id",
timestamp_column="timestamp",
target="target",
)
forecasts: List[SeriesForecast] = []
for series_id, group in pred_df.groupby("id"):
group = group.sort_values("timestamp")
timestamps_out = group["timestamp"].astype(str).tolist()
median = group["predictions"].astype(float).tolist()
quantiles_dict: Dict[str, List[float]] = {}
for q in req.quantile_levels:
key = f"{q:.3g}"
if key in group.columns:
quantiles_dict[key] = group[key].astype(float).tolist()
forecasts.append(
SeriesForecast(
series_id=series_id,
timestamps=timestamps_out,
median=median,
quantiles=quantiles_dict,
)
)
return ForecastMultiSeriesResponse(forecasts=forecasts)
# =========================
# 4) Pron贸stico con covariables
# =========================
class ForecastWithCovariatesRequest(BaseForecastConfig):
context: List[CovariatePoint]
future: Optional[List[CovariatePoint]] = None
class ForecastWithCovariatesResponse(BaseModel):
# filas con todas las columnas de pred_df serializadas como string
pred_df: List[Dict[str, str]]
@app.post("/forecast_with_covariates", response_model=ForecastWithCovariatesResponse)
def forecast_with_covariates(req: ForecastWithCovariatesRequest):
"""
Pron贸stico con informaci贸n de covariables (promos, precio, clima...) tanto
en el hist贸rico (context) como en futuros posibles (future).
"""
if not req.context:
raise HTTPException(status_code=400, detail="El contexto no puede estar vac铆o.")
ctx_rows = []
for p in req.context:
if p.target is None:
continue
row = {
"id": p.id or "series_0",
"timestamp": p.timestamp,
"target": p.target,
}
for k, v in p.covariates.items():
row[k] = v
ctx_rows.append(row)
context_df = pd.DataFrame(ctx_rows)
if "timestamp" not in context_df or context_df["timestamp"].isna().any():
context_df["timestamp"] = pd.RangeIndex(start=0, stop=len(context_df), step=1)
future_df = None
if req.future:
fut_rows = []
for p in req.future:
row = {
"id": p.id or "series_0",
"timestamp": p.timestamp,
}
for k, v in p.covariates.items():
row[k] = v
fut_rows.append(row)
future_df = pd.DataFrame(fut_rows)
if "timestamp" not in future_df or future_df["timestamp"].isna().any():
future_df["timestamp"] = pd.RangeIndex(
start=context_df["timestamp"].max() + 1,
stop=context_df["timestamp"].max() + 1 + len(future_df),
step=1,
)
pred_df = pipeline.predict_df(
context_df,
future_df=future_df,
prediction_length=req.prediction_length,
quantile_levels=req.quantile_levels,
id_column="id",
timestamp_column="timestamp",
target="target",
)
pred_df = pred_df.sort_values(["id", "timestamp"])
out_records: List[Dict[str, str]] = []
for _, row in pred_df.iterrows():
record = {k: str(v) for k, v in row.items()}
out_records.append(record)
return ForecastWithCovariatesResponse(pred_df=out_records)
# =========================
# 5) Multivariante (varios targets)
# =========================
class MultivariateContextPoint(BaseModel):
timestamp: Optional[str] = None
id: Optional[str] = None
targets: Dict[str, float] # p.ej. {"demand": 100, "returns": 5}
covariates: Dict[str, float] = Field(default_factory=dict)
class ForecastMultivariateRequest(BaseForecastConfig):
context: List[MultivariateContextPoint]
target_columns: List[str] # nombres de columnas objetivo
class ForecastMultivariateResponse(BaseModel):
pred_df: List[Dict[str, str]]
@app.post("/forecast_multivariate", response_model=ForecastMultivariateResponse)
def forecast_multivariate(req: ForecastMultivariateRequest):
"""
Pron贸stico multivariante: m煤ltiples columnas objetivo (p.ej. demanda y devoluciones).
"""
if not req.context:
raise HTTPException(status_code=400, detail="El contexto no puede estar vac铆o.")
if not req.target_columns:
raise HTTPException(status_code=400, detail="Debes indicar columnas objetivo.")
rows = []
for p in req.context:
base = {
"id": p.id or "series_0",
"timestamp": p.timestamp,
}
for t_name, t_val in p.targets.items():
base[t_name] = t_val
for k, v in p.covariates.items():
base[k] = v
rows.append(base)
context_df = pd.DataFrame(rows)
if "timestamp" not in context_df or context_df["timestamp"].isna().any():
context_df["timestamp"] = pd.RangeIndex(start=0, stop=len(context_df), step=1)
pred_df = pipeline.predict_df(
context_df,
prediction_length=req.prediction_length,
quantile_levels=req.quantile_levels,
id_column="id",
timestamp_column="timestamp",
target=req.target_columns,
)
pred_df = pred_df.sort_values(["id", "timestamp"])
out_records = [{k: str(v) for k, v in row.items()} for _, row in pred_df.iterrows()]
return ForecastMultivariateResponse(pred_df=out_records)
# =========================
# 6) Escenarios (what-if)
# =========================
class ScenarioDefinition(BaseModel):
name: str
future_covariates: List[CovariatePoint]
class ScenarioForecast(BaseModel):
name: str
pred_df: List[Dict[str, str]]
class ForecastScenariosRequest(BaseForecastConfig):
context: List[CovariatePoint]
scenarios: List[ScenarioDefinition]
class ForecastScenariosResponse(BaseModel):
scenarios: List[ScenarioForecast]
@app.post("/forecast_scenarios", response_model=ForecastScenariosResponse)
def forecast_scenarios(req: ForecastScenariosRequest):
"""
Evaluaci贸n de m煤ltiples escenarios (what-if) cambiando las covariables futuras
(por ejemplo, promo ON/OFF, diferentes precios, etc.).
"""
if not req.context:
raise HTTPException(status_code=400, detail="El contexto no puede estar vac铆o.")
if not req.scenarios:
raise HTTPException(status_code=400, detail="Debes definir al menos un escenario.")
ctx_rows = []
for p in req.context:
if p.target is None:
continue
row = {
"id": p.id or "series_0",
"timestamp": p.timestamp,
"target": p.target,
}
for k, v in p.covariates.items():
row[k] = v
ctx_rows.append(row)
context_df = pd.DataFrame(ctx_rows)
if "timestamp" not in context_df or context_df["timestamp"].isna().any():
context_df["timestamp"] = pd.RangeIndex(start=0, stop=len(context_df), step=1)
results: List[ScenarioForecast] = []
for scen in req.scenarios:
fut_rows = []
for p in scen.future_covariates:
row = {
"id": p.id or "series_0",
"timestamp": p.timestamp,
}
for k, v in p.covariates.items():
row[k] = v
fut_rows.append(row)
future_df = pd.DataFrame(fut_rows)
if "timestamp" not in future_df or future_df["timestamp"].isna().any():
future_df["timestamp"] = pd.RangeIndex(
start=context_df["timestamp"].max() + 1,
stop=context_df["timestamp"].max() + 1 + len(future_df),
step=1,
)
pred_df = pipeline.predict_df(
context_df,
future_df=future_df,
prediction_length=req.prediction_length,
quantile_levels=req.quantile_levels,
id_column="id",
timestamp_column="timestamp",
target="target",
)
pred_df = pred_df.sort_values(["id", "timestamp"])
out_records = [{k: str(v) for k, v in row.items()} for _, row in pred_df.iterrows()]
results.append(ScenarioForecast(name=scen.name, pred_df=out_records))
return ForecastScenariosResponse(scenarios=results)
# =========================
# 7) Detecci贸n de anomal铆as
# =========================
class AnomalyDetectionRequest(BaseModel):
context: UnivariateSeries
recent_observed: List[float]
prediction_length: int = 7
quantile_low: float = 0.05
quantile_high: float = 0.95
class AnomalyPoint(BaseModel):
index: int
value: float
predicted_median: float
lower: float
upper: float
is_anomaly: bool
class AnomalyDetectionResponse(BaseModel):
anomalies: List[AnomalyPoint]
@app.post("/detect_anomalies", response_model=AnomalyDetectionResponse)
def detect_anomalies(req: AnomalyDetectionRequest):
"""
Marca como anomal铆as los puntos observados recientes que caen fuera del
intervalo [quantile_low, quantile_high] del pron贸stico.
"""
n_hist = len(req.context.values)
if n_hist == 0:
raise HTTPException(status_code=400, detail="La serie hist贸rica no puede estar vac铆a.")
if len(req.recent_observed) != req.prediction_length:
raise HTTPException(
status_code=400,
detail="recent_observed debe tener la misma longitud que prediction_length.",
)
context_df = pd.DataFrame(
{
"id": ["series_0"] * n_hist,
"timestamp": pd.RangeIndex(start=0, stop=n_hist, step=1),
"target": req.context.values,
}
)
quantiles = sorted({req.quantile_low, 0.5, req.quantile_high})
pred_df = pipeline.predict_df(
context_df,
prediction_length=req.prediction_length,
quantile_levels=quantiles,
id_column="id",
timestamp_column="timestamp",
target="target",
).sort_values("timestamp")
q_low_col = f"{req.quantile_low:.3g}"
q_high_col = f"{req.quantile_high:.3g}"
anomalies: List[AnomalyPoint] = []
for i, (obs, (_, row)) in enumerate(zip(req.recent_observed, pred_df.iterrows())):
lower = float(row[q_low_col])
upper = float(row[q_high_col])
median = float(row["predictions"])
is_anom = (obs < lower) or (obs > upper)
anomalies.append(
AnomalyPoint(
index=i,
value=obs,
predicted_median=median,
lower=lower,
upper=upper,
is_anomaly=is_anom,
)
)
return AnomalyDetectionResponse(anomalies=anomalies)
# =========================
# 8) Backtest simple
# =========================
class BacktestRequest(BaseModel):
series: UnivariateSeries
prediction_length: int = 7
test_length: int = 28
class BacktestMetrics(BaseModel):
mae: float
mape: float
wql: float # Weighted Quantile Loss aproximada para el cuantil 0.5
class BacktestResponse(BaseModel):
metrics: BacktestMetrics
forecast_median: List[float]
forecast_timestamps: List[str]
actuals: List[float]
@app.post("/backtest_simple", response_model=BacktestResponse)
def backtest_simple(req: BacktestRequest):
"""
Backtest sencillo: separamos un tramo final de la serie como test, pronosticamos
ese tramo y calculamos m茅tricas MAE / MAPE / WQL.
"""
values = np.array(req.series.values, dtype=float)
n = len(values)
if n <= req.test_length:
raise HTTPException(
status_code=400,
detail="La serie debe ser m谩s larga que test_length.",
)
train = values[: n - req.test_length]
test = values[n - req.test_length :]
context_df = pd.DataFrame(
{
"id": ["series_0"] * len(train),
"timestamp": pd.RangeIndex(start=0, stop=len(train), step=1),
"target": train.tolist(),
}
)
pred_df = pipeline.predict_df(
context_df,
prediction_length=req.test_length,
quantile_levels=[0.5],
id_column="id",
timestamp_column="timestamp",
target="target",
).sort_values("timestamp")
forecast = pred_df["predictions"].to_numpy(dtype=float)
timestamps = pred_df["timestamp"].astype(str).tolist()
mae = float(np.mean(np.abs(test - forecast)))
eps = 1e-8
mape = float(np.mean(np.abs((test - forecast) / (test + eps)))) * 100.0
tau = 0.5
diff = test - forecast
wql = float(np.mean(np.maximum(tau * diff, (tau - 1) * diff)))
metrics = BacktestMetrics(mae=mae, mape=mape, wql=wql)
return BacktestResponse(
metrics=metrics,
forecast_median=forecast.tolist(),
forecast_timestamps=timestamps,
actuals=test.tolist(),
)
|