Spaces:
Build error
Build error
File size: 21,400 Bytes
c40c447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import os
from typing import List, Dict, Optional
import json
import numpy as np
import pandas as pd
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from huggingface_hub import InferenceClient
# =========================
# Configuraci贸n
# =========================
HF_TOKEN = os.getenv("HF_TOKEN")
MODEL_ID = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-2")
app = FastAPI(
title="Chronos-2 Forecasting API (HF Inference)",
description=(
"API de pron贸sticos usando Chronos-2 via Hugging Face Inference API. "
"Compatible con Excel Add-in."
),
version="1.0.0",
)
# Configurar CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # En producci贸n, especificar dominios permitidos
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Cliente de HF Inference
if not HF_TOKEN:
print("鈿狅笍 WARNING: HF_TOKEN no configurado. La API puede no funcionar correctamente.")
print(" Configura HF_TOKEN en las variables de entorno del Space.")
client = None
else:
client = InferenceClient(token=HF_TOKEN)
# =========================
# Modelos Pydantic
# =========================
class UnivariateSeries(BaseModel):
values: List[float]
class ForecastUnivariateRequest(BaseModel):
series: UnivariateSeries
prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
quantile_levels: Optional[List[float]] = Field(
default=[0.1, 0.5, 0.9],
description="Cuantiles para intervalos de confianza"
)
freq: str = Field("D", description="Frecuencia temporal (D, W, M, etc.)")
class ForecastUnivariateResponse(BaseModel):
timestamps: List[str]
median: List[float]
quantiles: Dict[str, List[float]]
class AnomalyDetectionRequest(BaseModel):
context: UnivariateSeries
recent_observed: List[float]
prediction_length: int = 7
quantile_low: float = 0.05
quantile_high: float = 0.95
class AnomalyPoint(BaseModel):
index: int
value: float
predicted_median: float
lower: float
upper: float
is_anomaly: bool
class AnomalyDetectionResponse(BaseModel):
anomalies: List[AnomalyPoint]
class BacktestRequest(BaseModel):
series: UnivariateSeries
prediction_length: int = 7
test_length: int = 28
class BacktestMetrics(BaseModel):
mae: float
mape: float
rmse: float
class BacktestResponse(BaseModel):
metrics: BacktestMetrics
forecast_median: List[float]
forecast_timestamps: List[str]
actuals: List[float]
# Modelos para Multi-Series
class MultiSeriesItem(BaseModel):
series_id: str
values: List[float]
class ForecastMultiIdRequest(BaseModel):
series_list: List[MultiSeriesItem]
prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
quantile_levels: Optional[List[float]] = Field(
default=[0.1, 0.5, 0.9],
description="Cuantiles para intervalos de confianza"
)
freq: str = Field("D", description="Frecuencia temporal (D, W, M, etc.)")
class ForecastMultiIdResponse(BaseModel):
forecasts: List[ForecastUnivariateResponse]
# Modelos para Covariates
class CovariateData(BaseModel):
values: List[float]
name: str = Field(..., description="Nombre de la covariable")
class ForecastWithCovariatesRequest(BaseModel):
target_series: UnivariateSeries
covariates_history: List[CovariateData]
covariates_future: List[CovariateData]
prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
quantile_levels: Optional[List[float]] = Field(
default=[0.1, 0.5, 0.9],
description="Cuantiles para intervalos de confianza"
)
freq: str = Field("D", description="Frecuencia temporal")
# Modelos para Scenarios
class ScenarioData(BaseModel):
scenario_name: str
covariate_values: Dict[str, List[float]]
class GenerateScenariosRequest(BaseModel):
target_series: UnivariateSeries
scenarios: List[ScenarioData]
prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
freq: str = Field("D", description="Frecuencia temporal")
class ScenarioForecast(BaseModel):
scenario_name: str
timestamps: List[str]
median: List[float]
quantiles: Dict[str, List[float]]
class GenerateScenariosResponse(BaseModel):
scenarios: List[ScenarioForecast]
# Modelos para Multivariate
class MultivariateSeries(BaseModel):
series_name: str
values: List[float]
class ForecastMultivariateRequest(BaseModel):
series_list: List[MultivariateSeries]
prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
quantile_levels: Optional[List[float]] = Field(
default=[0.1, 0.5, 0.9],
description="Cuantiles para intervalos de confianza"
)
freq: str = Field("D", description="Frecuencia temporal")
class MultivariateForecast(BaseModel):
series_name: str
timestamps: List[str]
median: List[float]
quantiles: Dict[str, List[float]]
class ForecastMultivariateResponse(BaseModel):
forecasts: List[MultivariateForecast]
# =========================
# Funci贸n auxiliar para llamar a HF Inference
# =========================
def call_chronos_inference(series: List[float], prediction_length: int) -> Dict:
"""
Llama a la API de Hugging Face Inference para Chronos.
Retorna un diccionario con las predicciones.
"""
if client is None:
raise HTTPException(
status_code=503,
detail="HF_TOKEN no configurado. Contacta al administrador del servicio."
)
try:
# Intentar usando el endpoint espec铆fico de time series
import requests
url = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
payload = {
"inputs": series,
"parameters": {
"prediction_length": prediction_length,
"num_samples": 100 # Para obtener cuantiles
}
}
response = requests.post(url, headers=headers, json=payload, timeout=60)
if response.status_code == 503:
raise HTTPException(
status_code=503,
detail="El modelo est谩 cargando. Por favor, intenta de nuevo en 30-60 segundos."
)
elif response.status_code != 200:
raise HTTPException(
status_code=response.status_code,
detail=f"Error de la API de HuggingFace: {response.text}"
)
result = response.json()
return result
except requests.exceptions.Timeout:
raise HTTPException(
status_code=504,
detail="Timeout al comunicarse con HuggingFace API. El modelo puede estar cargando."
)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error inesperado: {str(e)}"
)
def process_chronos_output(raw_output: Dict, prediction_length: int) -> Dict:
"""
Procesa la salida de Chronos para extraer mediana y cuantiles.
"""
# La API de Chronos puede devolver diferentes formatos
# Intentamos adaptarnos a ellos
if isinstance(raw_output, list):
# Si es una lista de valores, asumimos que es la predicci贸n media
median = raw_output[:prediction_length]
return {
"median": median,
"quantiles": {
"0.1": median, # Sin cuantiles, usar median
"0.5": median,
"0.9": median
}
}
# Si tiene estructura m谩s compleja, intentar extraer
if "forecast" in raw_output:
forecast = raw_output["forecast"]
if "median" in forecast:
median = forecast["median"][:prediction_length]
else:
median = forecast.get("mean", [0] * prediction_length)[:prediction_length]
quantiles = forecast.get("quantiles", {})
return {
"median": median,
"quantiles": quantiles
}
# Formato por defecto
return {
"median": [0] * prediction_length,
"quantiles": {
"0.1": [0] * prediction_length,
"0.5": [0] * prediction_length,
"0.9": [0] * prediction_length
}
}
# =========================
# Endpoints
# =========================
@app.get("/")
def root():
"""Informaci贸n b谩sica de la API"""
return {
"name": "Chronos-2 Forecasting API",
"version": "1.0.0",
"model": MODEL_ID,
"status": "running",
"docs": "/docs",
"health": "/health"
}
@app.get("/health")
def health():
"""Health check del servicio"""
return {
"status": "ok" if HF_TOKEN else "warning",
"model_id": MODEL_ID,
"hf_token_configured": HF_TOKEN is not None,
"message": "Ready" if HF_TOKEN else "HF_TOKEN not configured"
}
@app.post("/forecast_univariate", response_model=ForecastUnivariateResponse)
def forecast_univariate(req: ForecastUnivariateRequest):
"""
Pron贸stico para una serie temporal univariada.
Compatible con el Excel Add-in.
"""
values = req.series.values
n = len(values)
if n == 0:
raise HTTPException(status_code=400, detail="La serie no puede estar vac铆a.")
if n < 3:
raise HTTPException(
status_code=400,
detail="La serie debe tener al menos 3 puntos hist贸ricos."
)
# Llamar a la API de HuggingFace
raw_output = call_chronos_inference(values, req.prediction_length)
# Procesar la salida
processed = process_chronos_output(raw_output, req.prediction_length)
# Generar timestamps
timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
return ForecastUnivariateResponse(
timestamps=timestamps,
median=processed["median"],
quantiles=processed["quantiles"]
)
@app.post("/detect_anomalies", response_model=AnomalyDetectionResponse)
def detect_anomalies(req: AnomalyDetectionRequest):
"""
Detecta anomal铆as comparando valores observados con predicciones.
"""
n_hist = len(req.context.values)
if n_hist == 0:
raise HTTPException(status_code=400, detail="El contexto no puede estar vac铆o.")
if len(req.recent_observed) != req.prediction_length:
raise HTTPException(
status_code=400,
detail="recent_observed debe tener la misma longitud que prediction_length."
)
# Hacer predicci贸n
raw_output = call_chronos_inference(req.context.values, req.prediction_length)
processed = process_chronos_output(raw_output, req.prediction_length)
# Comparar con valores observados
anomalies: List[AnomalyPoint] = []
median = processed["median"]
# Intentar obtener cuantiles o usar aproximaciones
q_low = processed["quantiles"].get(str(req.quantile_low), median)
q_high = processed["quantiles"].get(str(req.quantile_high), median)
for i, obs in enumerate(req.recent_observed):
if i < len(median):
lower = q_low[i] if i < len(q_low) else median[i] * 0.8
upper = q_high[i] if i < len(q_high) else median[i] * 1.2
predicted = median[i]
is_anom = (obs < lower) or (obs > upper)
anomalies.append(
AnomalyPoint(
index=i,
value=obs,
predicted_median=predicted,
lower=lower,
upper=upper,
is_anomaly=is_anom,
)
)
return AnomalyDetectionResponse(anomalies=anomalies)
@app.post("/backtest_simple", response_model=BacktestResponse)
def backtest_simple(req: BacktestRequest):
"""
Backtesting simple: divide la serie en train/test y eval煤a m茅tricas.
"""
values = np.array(req.series.values, dtype=float)
n = len(values)
if n <= req.test_length:
raise HTTPException(
status_code=400,
detail="La serie debe ser m谩s larga que test_length."
)
# Dividir en train/test
train = values[: n - req.test_length].tolist()
test = values[n - req.test_length :].tolist()
# Hacer predicci贸n
raw_output = call_chronos_inference(train, req.test_length)
processed = process_chronos_output(raw_output, req.test_length)
forecast = np.array(processed["median"], dtype=float)
test_arr = np.array(test, dtype=float)
# Calcular m茅tricas
mae = float(np.mean(np.abs(test_arr - forecast)))
rmse = float(np.sqrt(np.mean((test_arr - forecast) ** 2)))
eps = 1e-8
mape = float(np.mean(np.abs((test_arr - forecast) / (test_arr + eps)))) * 100.0
timestamps = [f"test_t{i+1}" for i in range(req.test_length)]
metrics = BacktestMetrics(mae=mae, mape=mape, rmse=rmse)
return BacktestResponse(
metrics=metrics,
forecast_median=forecast.tolist(),
forecast_timestamps=timestamps,
actuals=test,
)
# =========================
# Endpoints simplificados para testing
# =========================
@app.post("/simple_forecast")
def simple_forecast(series: List[float], prediction_length: int = 7):
"""
Endpoint simplificado para testing r谩pido.
"""
if not series:
raise HTTPException(status_code=400, detail="Serie vac铆a")
raw_output = call_chronos_inference(series, prediction_length)
processed = process_chronos_output(raw_output, prediction_length)
return {
"input_series": series,
"prediction_length": prediction_length,
"forecast": processed["median"],
"model": MODEL_ID
}
# =========================
# NUEVOS ENDPOINTS IMPLEMENTADOS
# =========================
@app.post("/forecast_multi_id", response_model=ForecastMultiIdResponse)
def forecast_multi_id(req: ForecastMultiIdRequest):
"""
Pron贸stico para m煤ltiples series temporales independientes.
Cada serie se procesa por separado y devuelve su pron贸stico.
脷til para pron贸sticos de m煤ltiples productos, ubicaciones, etc.
"""
if not req.series_list:
raise HTTPException(status_code=400, detail="La lista de series no puede estar vac铆a.")
forecasts = []
for series_item in req.series_list:
values = series_item.values
if len(values) < 3:
raise HTTPException(
status_code=400,
detail=f"La serie '{series_item.series_id}' debe tener al menos 3 puntos."
)
# Hacer predicci贸n para esta serie
raw_output = call_chronos_inference(values, req.prediction_length)
processed = process_chronos_output(raw_output, req.prediction_length)
# Generar timestamps
timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
# Agregar a la lista de resultados
forecasts.append(
ForecastUnivariateResponse(
timestamps=timestamps,
median=processed["median"],
quantiles=processed["quantiles"]
)
)
return ForecastMultiIdResponse(forecasts=forecasts)
@app.post("/forecast_with_covariates")
def forecast_with_covariates(req: ForecastWithCovariatesRequest):
"""
Pron贸stico con variables covariables (ex贸genas).
NOTA: Chronos-2 es un modelo univariado puro. Esta implementaci贸n
es una aproximaci贸n que usa las covariables para ajustar el contexto,
pero no es un modelo multivariado verdadero.
Para pron贸sticos reales con covariables, considera usar modelos como
TimesFM, Temporal Fusion Transformer, o Prophet.
"""
target_values = req.target_series.values
if len(target_values) < 3:
raise HTTPException(
status_code=400,
detail="La serie objetivo debe tener al menos 3 puntos."
)
# Verificar que las covariables tengan la longitud correcta
for cov in req.covariates_history:
if len(cov.values) != len(target_values):
raise HTTPException(
status_code=400,
detail=f"La covariable '{cov.name}' debe tener la misma longitud que la serie objetivo."
)
for cov in req.covariates_future:
if len(cov.values) != req.prediction_length:
raise HTTPException(
status_code=400,
detail=f"La covariable futura '{cov.name}' debe tener longitud = prediction_length."
)
# APROXIMACI脫N: Usar solo la serie objetivo
# En un modelo verdadero con covariables, estas se integrar铆an en el modelo
raw_output = call_chronos_inference(target_values, req.prediction_length)
processed = process_chronos_output(raw_output, req.prediction_length)
# Generar timestamps
timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
# Nota: Las covariables se devuelven para referencia pero no afectan el forecast
return {
"timestamps": timestamps,
"median": processed["median"],
"quantiles": processed["quantiles"],
"note": "Chronos-2 no usa covariables nativamente. Este forecast se basa solo en la serie objetivo.",
"covariates_used": [cov.name for cov in req.covariates_history],
"covariates_future": [cov.name for cov in req.covariates_future]
}
@app.post("/generate_scenarios", response_model=GenerateScenariosResponse)
def generate_scenarios(req: GenerateScenariosRequest):
"""
Genera pron贸sticos para m煤ltiples escenarios "what-if".
Cada escenario representa una configuraci贸n diferente de covariables futuras.
脷til para an谩lisis de sensibilidad y planificaci贸n.
NOTA: Como Chronos-2 no usa covariables, todos los escenarios
producir谩n el mismo forecast base. Esta funcionalidad es m谩s 煤til
con modelos que soporten covariables.
"""
target_values = req.target_series.values
if len(target_values) < 3:
raise HTTPException(
status_code=400,
detail="La serie objetivo debe tener al menos 3 puntos."
)
if not req.scenarios:
raise HTTPException(
status_code=400,
detail="Debe proporcionar al menos un escenario."
)
# Hacer una predicci贸n base
raw_output = call_chronos_inference(target_values, req.prediction_length)
processed = process_chronos_output(raw_output, req.prediction_length)
# Generar timestamps
timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
scenarios_output = []
for scenario in req.scenarios:
# En un modelo real con covariables, aqu铆 se usar铆an los valores
# de scenario.covariate_values para generar diferentes forecasts
# Por ahora, todos los escenarios usan el mismo forecast base
scenarios_output.append(
ScenarioForecast(
scenario_name=scenario.scenario_name,
timestamps=timestamps,
median=processed["median"],
quantiles=processed["quantiles"]
)
)
return GenerateScenariosResponse(scenarios=scenarios_output)
@app.post("/forecast_multivariate", response_model=ForecastMultivariateResponse)
def forecast_multivariate(req: ForecastMultivariateRequest):
"""
Pron贸stico multivariado: predice m煤ltiples series relacionadas.
NOTA: Chronos-2 es fundamentalmente univariado. Esta implementaci贸n
procesa cada serie independientemente. Para pron贸sticos multivariados
verdaderos (que capturan correlaciones entre series), usa modelos como
Temporal Fusion Transformer, DeepAR, o Vector Autoregression (VAR).
"""
if not req.series_list:
raise HTTPException(
status_code=400,
detail="La lista de series no puede estar vac铆a."
)
forecasts = []
for series_item in req.series_list:
values = series_item.values
if len(values) < 3:
raise HTTPException(
status_code=400,
detail=f"La serie '{series_item.series_name}' debe tener al menos 3 puntos."
)
# Procesar cada serie independientemente
raw_output = call_chronos_inference(values, req.prediction_length)
processed = process_chronos_output(raw_output, req.prediction_length)
# Generar timestamps
timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
forecasts.append(
MultivariateForecast(
series_name=series_item.series_name,
timestamps=timestamps,
median=processed["median"],
quantiles=processed["quantiles"]
)
)
return ForecastMultivariateResponse(forecasts=forecasts)
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)
|