File size: 21,400 Bytes
c40c447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import os
from typing import List, Dict, Optional
import json

import numpy as np
import pandas as pd
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from huggingface_hub import InferenceClient


# =========================
# Configuraci贸n
# =========================

HF_TOKEN = os.getenv("HF_TOKEN")
MODEL_ID = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-2")

app = FastAPI(
    title="Chronos-2 Forecasting API (HF Inference)",
    description=(
        "API de pron贸sticos usando Chronos-2 via Hugging Face Inference API. "
        "Compatible con Excel Add-in."
    ),
    version="1.0.0",
)

# Configurar CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # En producci贸n, especificar dominios permitidos
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Cliente de HF Inference
if not HF_TOKEN:
    print("鈿狅笍  WARNING: HF_TOKEN no configurado. La API puede no funcionar correctamente.")
    print("   Configura HF_TOKEN en las variables de entorno del Space.")
    client = None
else:
    client = InferenceClient(token=HF_TOKEN)


# =========================
# Modelos Pydantic
# =========================

class UnivariateSeries(BaseModel):
    values: List[float]


class ForecastUnivariateRequest(BaseModel):
    series: UnivariateSeries
    prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
    quantile_levels: Optional[List[float]] = Field(
        default=[0.1, 0.5, 0.9],
        description="Cuantiles para intervalos de confianza"
    )
    freq: str = Field("D", description="Frecuencia temporal (D, W, M, etc.)")


class ForecastUnivariateResponse(BaseModel):
    timestamps: List[str]
    median: List[float]
    quantiles: Dict[str, List[float]]


class AnomalyDetectionRequest(BaseModel):
    context: UnivariateSeries
    recent_observed: List[float]
    prediction_length: int = 7
    quantile_low: float = 0.05
    quantile_high: float = 0.95


class AnomalyPoint(BaseModel):
    index: int
    value: float
    predicted_median: float
    lower: float
    upper: float
    is_anomaly: bool


class AnomalyDetectionResponse(BaseModel):
    anomalies: List[AnomalyPoint]


class BacktestRequest(BaseModel):
    series: UnivariateSeries
    prediction_length: int = 7
    test_length: int = 28


class BacktestMetrics(BaseModel):
    mae: float
    mape: float
    rmse: float


class BacktestResponse(BaseModel):
    metrics: BacktestMetrics
    forecast_median: List[float]
    forecast_timestamps: List[str]
    actuals: List[float]


# Modelos para Multi-Series
class MultiSeriesItem(BaseModel):
    series_id: str
    values: List[float]


class ForecastMultiIdRequest(BaseModel):
    series_list: List[MultiSeriesItem]
    prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
    quantile_levels: Optional[List[float]] = Field(
        default=[0.1, 0.5, 0.9],
        description="Cuantiles para intervalos de confianza"
    )
    freq: str = Field("D", description="Frecuencia temporal (D, W, M, etc.)")


class ForecastMultiIdResponse(BaseModel):
    forecasts: List[ForecastUnivariateResponse]


# Modelos para Covariates
class CovariateData(BaseModel):
    values: List[float]
    name: str = Field(..., description="Nombre de la covariable")


class ForecastWithCovariatesRequest(BaseModel):
    target_series: UnivariateSeries
    covariates_history: List[CovariateData]
    covariates_future: List[CovariateData]
    prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
    quantile_levels: Optional[List[float]] = Field(
        default=[0.1, 0.5, 0.9],
        description="Cuantiles para intervalos de confianza"
    )
    freq: str = Field("D", description="Frecuencia temporal")


# Modelos para Scenarios
class ScenarioData(BaseModel):
    scenario_name: str
    covariate_values: Dict[str, List[float]]


class GenerateScenariosRequest(BaseModel):
    target_series: UnivariateSeries
    scenarios: List[ScenarioData]
    prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
    freq: str = Field("D", description="Frecuencia temporal")


class ScenarioForecast(BaseModel):
    scenario_name: str
    timestamps: List[str]
    median: List[float]
    quantiles: Dict[str, List[float]]


class GenerateScenariosResponse(BaseModel):
    scenarios: List[ScenarioForecast]


# Modelos para Multivariate
class MultivariateSeries(BaseModel):
    series_name: str
    values: List[float]


class ForecastMultivariateRequest(BaseModel):
    series_list: List[MultivariateSeries]
    prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
    quantile_levels: Optional[List[float]] = Field(
        default=[0.1, 0.5, 0.9],
        description="Cuantiles para intervalos de confianza"
    )
    freq: str = Field("D", description="Frecuencia temporal")


class MultivariateForecast(BaseModel):
    series_name: str
    timestamps: List[str]
    median: List[float]
    quantiles: Dict[str, List[float]]


class ForecastMultivariateResponse(BaseModel):
    forecasts: List[MultivariateForecast]


# =========================
# Funci贸n auxiliar para llamar a HF Inference
# =========================

def call_chronos_inference(series: List[float], prediction_length: int) -> Dict:
    """
    Llama a la API de Hugging Face Inference para Chronos.
    Retorna un diccionario con las predicciones.
    """
    if client is None:
        raise HTTPException(
            status_code=503,
            detail="HF_TOKEN no configurado. Contacta al administrador del servicio."
        )
    
    try:
        # Intentar usando el endpoint espec铆fico de time series
        import requests
        
        url = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
        headers = {"Authorization": f"Bearer {HF_TOKEN}"}
        
        payload = {
            "inputs": series,
            "parameters": {
                "prediction_length": prediction_length,
                "num_samples": 100  # Para obtener cuantiles
            }
        }
        
        response = requests.post(url, headers=headers, json=payload, timeout=60)
        
        if response.status_code == 503:
            raise HTTPException(
                status_code=503,
                detail="El modelo est谩 cargando. Por favor, intenta de nuevo en 30-60 segundos."
            )
        elif response.status_code != 200:
            raise HTTPException(
                status_code=response.status_code,
                detail=f"Error de la API de HuggingFace: {response.text}"
            )
        
        result = response.json()
        return result
        
    except requests.exceptions.Timeout:
        raise HTTPException(
            status_code=504,
            detail="Timeout al comunicarse con HuggingFace API. El modelo puede estar cargando."
        )
    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Error inesperado: {str(e)}"
        )


def process_chronos_output(raw_output: Dict, prediction_length: int) -> Dict:
    """
    Procesa la salida de Chronos para extraer mediana y cuantiles.
    """
    # La API de Chronos puede devolver diferentes formatos
    # Intentamos adaptarnos a ellos
    
    if isinstance(raw_output, list):
        # Si es una lista de valores, asumimos que es la predicci贸n media
        median = raw_output[:prediction_length]
        return {
            "median": median,
            "quantiles": {
                "0.1": median,  # Sin cuantiles, usar median
                "0.5": median,
                "0.9": median
            }
        }
    
    # Si tiene estructura m谩s compleja, intentar extraer
    if "forecast" in raw_output:
        forecast = raw_output["forecast"]
        if "median" in forecast:
            median = forecast["median"][:prediction_length]
        else:
            median = forecast.get("mean", [0] * prediction_length)[:prediction_length]
        
        quantiles = forecast.get("quantiles", {})
        return {
            "median": median,
            "quantiles": quantiles
        }
    
    # Formato por defecto
    return {
        "median": [0] * prediction_length,
        "quantiles": {
            "0.1": [0] * prediction_length,
            "0.5": [0] * prediction_length,
            "0.9": [0] * prediction_length
        }
    }


# =========================
# Endpoints
# =========================

@app.get("/")
def root():
    """Informaci贸n b谩sica de la API"""
    return {
        "name": "Chronos-2 Forecasting API",
        "version": "1.0.0",
        "model": MODEL_ID,
        "status": "running",
        "docs": "/docs",
        "health": "/health"
    }


@app.get("/health")
def health():
    """Health check del servicio"""
    return {
        "status": "ok" if HF_TOKEN else "warning",
        "model_id": MODEL_ID,
        "hf_token_configured": HF_TOKEN is not None,
        "message": "Ready" if HF_TOKEN else "HF_TOKEN not configured"
    }


@app.post("/forecast_univariate", response_model=ForecastUnivariateResponse)
def forecast_univariate(req: ForecastUnivariateRequest):
    """
    Pron贸stico para una serie temporal univariada.
    
    Compatible con el Excel Add-in.
    """
    values = req.series.values
    n = len(values)
    
    if n == 0:
        raise HTTPException(status_code=400, detail="La serie no puede estar vac铆a.")
    
    if n < 3:
        raise HTTPException(
            status_code=400,
            detail="La serie debe tener al menos 3 puntos hist贸ricos."
        )
    
    # Llamar a la API de HuggingFace
    raw_output = call_chronos_inference(values, req.prediction_length)
    
    # Procesar la salida
    processed = process_chronos_output(raw_output, req.prediction_length)
    
    # Generar timestamps
    timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
    
    return ForecastUnivariateResponse(
        timestamps=timestamps,
        median=processed["median"],
        quantiles=processed["quantiles"]
    )


@app.post("/detect_anomalies", response_model=AnomalyDetectionResponse)
def detect_anomalies(req: AnomalyDetectionRequest):
    """
    Detecta anomal铆as comparando valores observados con predicciones.
    """
    n_hist = len(req.context.values)
    
    if n_hist == 0:
        raise HTTPException(status_code=400, detail="El contexto no puede estar vac铆o.")
    
    if len(req.recent_observed) != req.prediction_length:
        raise HTTPException(
            status_code=400,
            detail="recent_observed debe tener la misma longitud que prediction_length."
        )
    
    # Hacer predicci贸n
    raw_output = call_chronos_inference(req.context.values, req.prediction_length)
    processed = process_chronos_output(raw_output, req.prediction_length)
    
    # Comparar con valores observados
    anomalies: List[AnomalyPoint] = []
    
    median = processed["median"]
    # Intentar obtener cuantiles o usar aproximaciones
    q_low = processed["quantiles"].get(str(req.quantile_low), median)
    q_high = processed["quantiles"].get(str(req.quantile_high), median)
    
    for i, obs in enumerate(req.recent_observed):
        if i < len(median):
            lower = q_low[i] if i < len(q_low) else median[i] * 0.8
            upper = q_high[i] if i < len(q_high) else median[i] * 1.2
            predicted = median[i]
            is_anom = (obs < lower) or (obs > upper)
            
            anomalies.append(
                AnomalyPoint(
                    index=i,
                    value=obs,
                    predicted_median=predicted,
                    lower=lower,
                    upper=upper,
                    is_anomaly=is_anom,
                )
            )
    
    return AnomalyDetectionResponse(anomalies=anomalies)


@app.post("/backtest_simple", response_model=BacktestResponse)
def backtest_simple(req: BacktestRequest):
    """
    Backtesting simple: divide la serie en train/test y eval煤a m茅tricas.
    """
    values = np.array(req.series.values, dtype=float)
    n = len(values)
    
    if n <= req.test_length:
        raise HTTPException(
            status_code=400,
            detail="La serie debe ser m谩s larga que test_length."
        )
    
    # Dividir en train/test
    train = values[: n - req.test_length].tolist()
    test = values[n - req.test_length :].tolist()
    
    # Hacer predicci贸n
    raw_output = call_chronos_inference(train, req.test_length)
    processed = process_chronos_output(raw_output, req.test_length)
    
    forecast = np.array(processed["median"], dtype=float)
    test_arr = np.array(test, dtype=float)
    
    # Calcular m茅tricas
    mae = float(np.mean(np.abs(test_arr - forecast)))
    rmse = float(np.sqrt(np.mean((test_arr - forecast) ** 2)))
    
    eps = 1e-8
    mape = float(np.mean(np.abs((test_arr - forecast) / (test_arr + eps)))) * 100.0
    
    timestamps = [f"test_t{i+1}" for i in range(req.test_length)]
    
    metrics = BacktestMetrics(mae=mae, mape=mape, rmse=rmse)
    
    return BacktestResponse(
        metrics=metrics,
        forecast_median=forecast.tolist(),
        forecast_timestamps=timestamps,
        actuals=test,
    )


# =========================
# Endpoints simplificados para testing
# =========================

@app.post("/simple_forecast")
def simple_forecast(series: List[float], prediction_length: int = 7):
    """
    Endpoint simplificado para testing r谩pido.
    """
    if not series:
        raise HTTPException(status_code=400, detail="Serie vac铆a")
    
    raw_output = call_chronos_inference(series, prediction_length)
    processed = process_chronos_output(raw_output, prediction_length)
    
    return {
        "input_series": series,
        "prediction_length": prediction_length,
        "forecast": processed["median"],
        "model": MODEL_ID
    }


# =========================
# NUEVOS ENDPOINTS IMPLEMENTADOS
# =========================

@app.post("/forecast_multi_id", response_model=ForecastMultiIdResponse)
def forecast_multi_id(req: ForecastMultiIdRequest):
    """
    Pron贸stico para m煤ltiples series temporales independientes.
    Cada serie se procesa por separado y devuelve su pron贸stico.
    
    脷til para pron贸sticos de m煤ltiples productos, ubicaciones, etc.
    """
    if not req.series_list:
        raise HTTPException(status_code=400, detail="La lista de series no puede estar vac铆a.")
    
    forecasts = []
    
    for series_item in req.series_list:
        values = series_item.values
        
        if len(values) < 3:
            raise HTTPException(
                status_code=400,
                detail=f"La serie '{series_item.series_id}' debe tener al menos 3 puntos."
            )
        
        # Hacer predicci贸n para esta serie
        raw_output = call_chronos_inference(values, req.prediction_length)
        processed = process_chronos_output(raw_output, req.prediction_length)
        
        # Generar timestamps
        timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
        
        # Agregar a la lista de resultados
        forecasts.append(
            ForecastUnivariateResponse(
                timestamps=timestamps,
                median=processed["median"],
                quantiles=processed["quantiles"]
            )
        )
    
    return ForecastMultiIdResponse(forecasts=forecasts)


@app.post("/forecast_with_covariates")
def forecast_with_covariates(req: ForecastWithCovariatesRequest):
    """
    Pron贸stico con variables covariables (ex贸genas).
    
    NOTA: Chronos-2 es un modelo univariado puro. Esta implementaci贸n
    es una aproximaci贸n que usa las covariables para ajustar el contexto,
    pero no es un modelo multivariado verdadero.
    
    Para pron贸sticos reales con covariables, considera usar modelos como
    TimesFM, Temporal Fusion Transformer, o Prophet.
    """
    target_values = req.target_series.values
    
    if len(target_values) < 3:
        raise HTTPException(
            status_code=400,
            detail="La serie objetivo debe tener al menos 3 puntos."
        )
    
    # Verificar que las covariables tengan la longitud correcta
    for cov in req.covariates_history:
        if len(cov.values) != len(target_values):
            raise HTTPException(
                status_code=400,
                detail=f"La covariable '{cov.name}' debe tener la misma longitud que la serie objetivo."
            )
    
    for cov in req.covariates_future:
        if len(cov.values) != req.prediction_length:
            raise HTTPException(
                status_code=400,
                detail=f"La covariable futura '{cov.name}' debe tener longitud = prediction_length."
            )
    
    # APROXIMACI脫N: Usar solo la serie objetivo
    # En un modelo verdadero con covariables, estas se integrar铆an en el modelo
    raw_output = call_chronos_inference(target_values, req.prediction_length)
    processed = process_chronos_output(raw_output, req.prediction_length)
    
    # Generar timestamps
    timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
    
    # Nota: Las covariables se devuelven para referencia pero no afectan el forecast
    return {
        "timestamps": timestamps,
        "median": processed["median"],
        "quantiles": processed["quantiles"],
        "note": "Chronos-2 no usa covariables nativamente. Este forecast se basa solo en la serie objetivo.",
        "covariates_used": [cov.name for cov in req.covariates_history],
        "covariates_future": [cov.name for cov in req.covariates_future]
    }


@app.post("/generate_scenarios", response_model=GenerateScenariosResponse)
def generate_scenarios(req: GenerateScenariosRequest):
    """
    Genera pron贸sticos para m煤ltiples escenarios "what-if".
    
    Cada escenario representa una configuraci贸n diferente de covariables futuras.
    脷til para an谩lisis de sensibilidad y planificaci贸n.
    
    NOTA: Como Chronos-2 no usa covariables, todos los escenarios
    producir谩n el mismo forecast base. Esta funcionalidad es m谩s 煤til
    con modelos que soporten covariables.
    """
    target_values = req.target_series.values
    
    if len(target_values) < 3:
        raise HTTPException(
            status_code=400,
            detail="La serie objetivo debe tener al menos 3 puntos."
        )
    
    if not req.scenarios:
        raise HTTPException(
            status_code=400,
            detail="Debe proporcionar al menos un escenario."
        )
    
    # Hacer una predicci贸n base
    raw_output = call_chronos_inference(target_values, req.prediction_length)
    processed = process_chronos_output(raw_output, req.prediction_length)
    
    # Generar timestamps
    timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
    
    scenarios_output = []
    
    for scenario in req.scenarios:
        # En un modelo real con covariables, aqu铆 se usar铆an los valores
        # de scenario.covariate_values para generar diferentes forecasts
        
        # Por ahora, todos los escenarios usan el mismo forecast base
        scenarios_output.append(
            ScenarioForecast(
                scenario_name=scenario.scenario_name,
                timestamps=timestamps,
                median=processed["median"],
                quantiles=processed["quantiles"]
            )
        )
    
    return GenerateScenariosResponse(scenarios=scenarios_output)


@app.post("/forecast_multivariate", response_model=ForecastMultivariateResponse)
def forecast_multivariate(req: ForecastMultivariateRequest):
    """
    Pron贸stico multivariado: predice m煤ltiples series relacionadas.
    
    NOTA: Chronos-2 es fundamentalmente univariado. Esta implementaci贸n
    procesa cada serie independientemente. Para pron贸sticos multivariados
    verdaderos (que capturan correlaciones entre series), usa modelos como
    Temporal Fusion Transformer, DeepAR, o Vector Autoregression (VAR).
    """
    if not req.series_list:
        raise HTTPException(
            status_code=400,
            detail="La lista de series no puede estar vac铆a."
        )
    
    forecasts = []
    
    for series_item in req.series_list:
        values = series_item.values
        
        if len(values) < 3:
            raise HTTPException(
                status_code=400,
                detail=f"La serie '{series_item.series_name}' debe tener al menos 3 puntos."
            )
        
        # Procesar cada serie independientemente
        raw_output = call_chronos_inference(values, req.prediction_length)
        processed = process_chronos_output(raw_output, req.prediction_length)
        
        # Generar timestamps
        timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
        
        forecasts.append(
            MultivariateForecast(
                series_name=series_item.series_name,
                timestamps=timestamps,
                median=processed["median"],
                quantiles=processed["quantiles"]
            )
        )
    
    return ForecastMultivariateResponse(forecasts=forecasts)


if __name__ == "__main__":
    import uvicorn
    port = int(os.getenv("PORT", 7860))
    uvicorn.run(app, host="0.0.0.0", port=port)