Spaces:
Running
Running
File size: 13,753 Bytes
6faf4c6 8f4b3cd 6faf4c6 8f4b3cd 6faf4c6 8f4b3cd 6faf4c6 8f4b3cd 6faf4c6 8f4b3cd 6faf4c6 8f4b3cd 6faf4c6 8f4b3cd 6faf4c6 8f4b3cd 8353d61 8f4b3cd 6faf4c6 8353d61 6faf4c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import io
import json
import struct
import zlib
from typing import List, Dict, Any, Optional, Union
import gradio as gr
from PIL import Image, PngImagePlugin
# -------- THEME (similar to your example) --------
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="violet", radius_size="lg")
# =================================================
# ========== PNG Text Chunk Reader (tab 1) ========
# =================================================
PNG_SIGNATURE = b"\x89PNG\r\n\x1a\n"
def _parse_png_text_chunks(data: bytes) -> List[Dict[str, Any]]:
"""
Parse PNG chunks and extract tEXt, zTXt, and iTXt entries.
"""
if not data.startswith(PNG_SIGNATURE):
raise ValueError("Not a PNG file.")
pos = len(PNG_SIGNATURE)
out = []
while pos + 8 <= len(data):
# Read chunk length and type
length = struct.unpack(">I", data[pos:pos+4])[0]
ctype = data[pos+4:pos+8]
pos += 8
if pos + length + 4 > len(data):
break
cdata = data[pos:pos+length]
pos += length
# Skip CRC (4 bytes)
pos += 4
if ctype == b"tEXt":
# Latin-1: key\0value
try:
null_idx = cdata.index(b"\x00")
key = cdata[:null_idx].decode("latin-1", "replace")
text = cdata[null_idx+1:].decode("latin-1", "replace")
out.append({"type": "tEXt", "keyword": key, "text": text})
except Exception:
pass
elif ctype == b"zTXt":
# key\0compression_method(1) + compressed data
try:
null_idx = cdata.index(b"\x00")
key = cdata[:null_idx].decode("latin-1", "replace")
method = cdata[null_idx+1:null_idx+2]
comp = cdata[null_idx+2:]
if method == b"\x00": # zlib/deflate
text = zlib.decompress(comp).decode("latin-1", "replace")
out.append({"type": "zTXt", "keyword": key, "text": text})
except Exception:
pass
elif ctype == b"iTXt":
# UTF-8: key\0flag(1)\0method(1)\0lang\0translated\0text
try:
i0 = cdata.index(b"\x00")
key = cdata[:i0].decode("latin-1", "replace")
comp_flag = cdata[i0+1:i0+2]
comp_method = cdata[i0+2:i0+3]
rest = cdata[i0+3:]
i1 = rest.index(b"\x00")
language_tag = rest[:i1].decode("ascii", "replace")
rest2 = rest[i1+1:]
i2 = rest2.index(b"\x00")
translated_keyword = rest2[:i2].decode("utf-8", "replace")
text_bytes = rest2[i2+1:]
if comp_flag == b"\x01" and comp_method == b"\x00":
text = zlib.decompress(text_bytes).decode("utf-8", "replace")
else:
text = text_bytes.decode("utf-8", "replace")
out.append({
"type": "iTXt",
"keyword": key,
"language_tag": language_tag,
"translated_keyword": translated_keyword,
"text": text,
})
except Exception:
pass
if ctype == b"IEND":
break
return out
def read_png_info(file_obj) -> Dict[str, Any]:
"""
Given an uploaded file (path or file-like), return structured PNG text info.
Also surface Pillow's .info (which often contains 'parameters').
"""
if hasattr(file_obj, "read"):
data = file_obj.read()
else:
with open(file_obj, "rb") as f:
data = f.read()
chunks = _parse_png_text_chunks(data)
try:
img = Image.open(io.BytesIO(data))
pil_info = dict(img.info)
for k, v in list(pil_info.items()):
if isinstance(v, (bytes, bytearray)):
try:
pil_info[k] = v.decode("utf-8", "replace")
except Exception:
pil_info[k] = repr(v)
elif isinstance(v, PngImagePlugin.PngInfo):
pil_info[k] = "PngInfo(...)"
except Exception as e:
pil_info = {"_error": f"Pillow failed to open PNG: {e}"}
response = {
"found_text_chunks": chunks,
"pil_info": pil_info,
"quick_fields": {
"parameters": next((c["text"] for c in chunks if c.get("keyword") == "parameters"), pil_info.get("parameters")),
"Software": next((c["text"] for c in chunks if c.get("keyword") == "Software"), pil_info.get("Software")),
},
}
return response
def infer_png_text(file):
if file is None:
return {"error": "Please upload a PNG file."}
try:
return read_png_info(file.name if hasattr(file, "name") else file)
except Exception as e:
return {"error": str(e)}
# =================================================
# ========== NovelAI LSB Reader (tab 2) ===========
# =================================================
# (User-provided logic, lightly wrapped for Gradio.)
import numpy as np
import gzip
from pathlib import Path
from io import BytesIO
def _pack_lsb_bytes(alpha: np.ndarray) -> np.ndarray:
"""
Pack the least significant bits (LSB) from an image's alpha channel into bytes.
"""
alpha = alpha.T.reshape((-1,))
alpha = alpha[:(alpha.shape[0] // 8) * 8]
alpha = np.bitwise_and(alpha, 1)
alpha = alpha.reshape((-1, 8))
alpha = np.packbits(alpha, axis=1)
return alpha
class LSBReader:
"""
Utility class for reading hidden data from an image's alpha channel using LSB encoding.
"""
def __init__(self, data: np.ndarray):
self.data = _pack_lsb_bytes(data[..., -1])
self.pos = 0
def read_bytes(self, n: int) -> bytearray:
"""Read `n` bytes from the bitstream."""
n_bytes = self.data[self.pos:self.pos + n]
self.pos += n
return bytearray(n_bytes.flatten().tolist())
def read_int32(self) -> Optional[int]:
"""Read a 4-byte big-endian integer from the bitstream."""
bytes_list = self.read_bytes(4)
return int.from_bytes(bytes_list, 'big') if len(bytes_list) == 4 else None
def _extract_nai_metadata_from_image(image: Image.Image) -> dict:
"""
Extract embedded metadata from a PNG image generated by NovelAI.
"""
image_array = np.array(image.convert("RGBA"))
if image_array.shape[-1] != 4 or len(image_array.shape) != 3:
raise ValueError("Image must be in RGBA format")
reader = LSBReader(image_array)
magic = "stealth_pngcomp"
if reader.read_bytes(len(magic)).decode("utf-8", "replace") != magic:
raise ValueError("Invalid magic number (not NovelAI stealth payload)")
bit_len = reader.read_int32()
if bit_len is None or bit_len <= 0:
raise ValueError("Invalid payload length")
json_len = bit_len // 8
compressed_json = reader.read_bytes(json_len)
json_data = json.loads(gzip.decompress(bytes(compressed_json)).decode("utf-8"))
if "Comment" in json_data and isinstance(json_data["Comment"], str):
try:
json_data["Comment"] = json.loads(json_data["Comment"])
except Exception:
# Leave as-is if not valid JSON
pass
return json_data
def extract_nai_metadata(image: Union[Image.Image, str, Path]) -> dict:
if isinstance(image, (str, Path)):
image = Image.open(image)
elif not isinstance(image, Image.Image):
raise ValueError("Input must be a file path (string/Path) or a PIL Image")
return _extract_nai_metadata_from_image(image)
def extract_nai_caption_from_hf_img(hf_img: dict) -> Optional[str]:
image_bytes = hf_img['bytes']
pil_image = Image.open(BytesIO(image_bytes))
metadata = extract_nai_metadata(pil_image)
return metadata.get('Description')
def infer_nai(image: Optional[Image.Image]):
if image is None:
return None, {"error": "Please upload a PNG with alpha channel (RGBA)."}
try:
meta = extract_nai_metadata(image)
description = meta.get("Description")
return description, meta
except Exception as e:
return None, {"error": str(e)}
# =================================================
# =========== Similarity Metrics (tab 3) ===========
# =================================================
def _load_rgb_image(path: Union[str, Path]) -> np.ndarray:
"""Load an image file as RGB uint8 numpy array."""
img = Image.open(path).convert("RGB")
return np.array(img, dtype=np.uint8)
def _pixel_metrics(img_a: np.ndarray, img_b: np.ndarray) -> Dict[str, float]:
"""Compute basic pixel-wise similarity metrics between two RGB images."""
if img_a.shape != img_b.shape:
raise ValueError(f"Image size mismatch: {img_a.shape} vs {img_b.shape}")
diff = img_a.astype(np.float32) - img_b.astype(np.float32)
abs_diff = np.abs(diff)
mse = float(np.mean(diff ** 2))
mae = float(np.mean(abs_diff))
max_abs = float(np.max(abs_diff))
pixel_match = float(np.mean(img_a == img_b))
pixel_diff_pct = float(100.0 * (1.0 - pixel_match))
if mse == 0.0:
psnr = float("inf")
else:
psnr = float(20.0 * np.log10(255.0 / np.sqrt(mse)))
return {
"pixel_diff_pct": pixel_diff_pct,
"pixel_match": pixel_match,
"mse": mse,
"mae": mae,
"max_abs": max_abs,
"psnr": psnr,
}
def compute_similarity_report(files: Optional[List[str]]) -> str:
if not files or len(files) < 2:
return "Upload at least two images to compare (first file is treated as base)."
try:
images: Dict[str, np.ndarray] = {}
base_name = None
base_img = None
for idx, file_path in enumerate(files):
name = Path(file_path).name
images[name] = _load_rgb_image(file_path)
if idx == 0:
base_name = name
base_img = images[name]
if base_name is None or base_img is None:
return "Failed to load base image."
metrics: Dict[str, Dict[str, float]] = {}
# Base vs others
for name, img in images.items():
if name == base_name:
continue
metrics[f"{base_name}_vs_{name}"] = _pixel_metrics(base_img, img)
# Pairwise among non-base images
other_keys = [k for k in images.keys() if k != base_name]
for i in range(len(other_keys)):
for j in range(i + 1, len(other_keys)):
k1, k2 = other_keys[i], other_keys[j]
metrics[f"{k1}_vs_{k2}"] = _pixel_metrics(images[k1], images[k2])
lines = [
"=== similarity metrics ===",
f"Base image: {base_name}",
]
for name, vals in metrics.items():
lines.append(
(
f"{name}: pixel_diff_pct={vals['pixel_diff_pct']:.6f}%, "
f"pixel_match={vals['pixel_match']:.6f}, mse={vals['mse']:.6e}, "
f"mae={vals['mae']:.6e}, max_abs={vals['max_abs']:.6e}, "
f"psnr={vals['psnr']:.2f}dB"
)
)
lines.append("\nMetrics (JSON):")
lines.append(json.dumps(metrics, indent=2))
return "\n".join(lines)
except Exception as exc: # pragma: no cover - handled for UI
return f"Error computing metrics: {exc}"
# =================================================
# =============== Gradio App (two tabs) ===========
# =================================================
with gr.Blocks(title="PNG Tools — ImageInfo & NovelAI Reader", theme=theme, analytics_enabled=False) as demo:
gr.Markdown("# PNG Tools\nTwo utilities: PNG text-chunk metadata and NovelAI LSB metadata.")
with gr.Tabs():
with gr.Tab("PNG ImageInfo Reader"):
with gr.Row():
inp_png = gr.File(label="PNG file", file_types=[".png"])
out_png = gr.JSON(label="pngImageInfo")
inp_png.change(fn=infer_png_text, inputs=inp_png, outputs=out_png)
gr.Markdown("Tip: Stable Diffusion ‘parameters’ often appear under a **tEXt** chunk with keyword `parameters`.")
with gr.Tab("NovelAI Reader"):
with gr.Row():
nai_img = gr.Image(label="Upload PNG (RGBA preferred)", type="pil", height=360)
with gr.Row():
nai_btn = gr.Button("Extract NovelAI Metadata", variant="primary")
with gr.Row():
nai_desc = gr.Textbox(label="Description (if present)", lines=4)
nai_json = gr.JSON(label="Decoded NovelAI JSON")
nai_btn.click(fn=infer_nai, inputs=nai_img, outputs=[nai_desc, nai_json])
with gr.Tab("Similarity Metrics"):
gr.Markdown("Upload multiple images; the first file is treated as the base for comparisons.")
files_in = gr.Files(
label="Image files",
# Explicit list ensures WebP acceptance across Gradio builds
file_types=[
".png", ".jpg", ".jpeg", ".webp", ".gif",
".bmp", ".tif", ".tiff", ".jfif"
],
type="filepath",
interactive=True,
)
with gr.Row():
metrics_btn = gr.Button("Compute Similarity", variant="primary")
metrics_out = gr.Textbox(label="Similarity report", lines=14, show_copy_button=True)
metrics_btn.click(fn=compute_similarity_report, inputs=files_in, outputs=metrics_out)
if __name__ == "__main__":
demo.launch()
|