Spaces:
Sleeping
Sleeping
| from transformers import BartForConditionalGeneration, BartTokenizer | |
| class SummarizationModel: | |
| def __init__(self): | |
| self.model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") | |
| self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") | |
| def summarize(self, text): | |
| # Split the text into lines and remove empty lines | |
| lines = [line.strip() for line in text.split('\n') if line.strip()] | |
| # If there's only one line, return it as is | |
| if len(lines) <= 1: | |
| return text.strip() | |
| # Otherwise, proceed with summarization | |
| inputs = self.tokenizer([text], max_length=1024, return_tensors="pt", truncation=True) | |
| summary_ids = self.model.generate(inputs["input_ids"], num_beams=4, max_length=100, early_stopping=True) | |
| return self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |