Spaces:
Running
Running
| import numpy as np | |
| import torch | |
| from torch import nn | |
| import subprocess as sp | |
| import os, math | |
| class EarlyStoppingTorch: | |
| """Early stops the training if validation loss doesn't improve after a given patience.""" | |
| def __init__(self, save_path=None, patience=7, verbose=False, delta=0.0001): | |
| """ | |
| Args: | |
| save_path : | |
| patience (int): How long to wait after last time validation loss improved. | |
| Default: 7 | |
| verbose (bool): If True, prints a message for each validation loss improvement. | |
| Default: False | |
| delta (float): Minimum change in the monitored quantity to qualify as an improvement. | |
| Default: 0 | |
| """ | |
| self.save_path = save_path | |
| self.patience = patience | |
| self.verbose = verbose | |
| self.counter = 0 | |
| self.best_score = None | |
| self.early_stop = False | |
| self.val_loss_min = np.inf | |
| self.delta = delta | |
| def __call__(self, val_loss, model): | |
| score = -val_loss | |
| if self.best_score is None: | |
| self.best_score = score | |
| self.save_checkpoint(val_loss, model) | |
| elif score < self.best_score + self.delta: | |
| self.counter += 1 | |
| print(f'EarlyStopping counter: {self.counter} out of {self.patience}') | |
| if self.counter >= self.patience: | |
| self.early_stop = True | |
| else: | |
| self.best_score = score | |
| self.save_checkpoint(val_loss, model) | |
| self.counter = 0 | |
| def save_checkpoint(self, val_loss, model): | |
| '''Saves model when validation loss decrease.''' | |
| if self.verbose: | |
| print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') | |
| if self.save_path: | |
| path = os.path.join(self.save_path, 'best_network.pth') | |
| torch.save(model.state_dict(), path) | |
| self.val_loss_min = val_loss | |
| class PositionalEmbedding(nn.Module): | |
| def __init__(self, d_model, max_len=5000): | |
| super(PositionalEmbedding, self).__init__() | |
| # Compute the positional encodings once in log space. | |
| pe = torch.zeros(max_len, d_model).float() | |
| pe.require_grad = False | |
| position = torch.arange(0, max_len).float().unsqueeze(1) | |
| div_term = (torch.arange(0, d_model, 2).float() | |
| * -(math.log(10000.0) / d_model)).exp() | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| return self.pe[:, :x.size(1)] | |
| class TokenEmbedding(nn.Module): | |
| def __init__(self, c_in, d_model): | |
| super(TokenEmbedding, self).__init__() | |
| padding = 1 if torch.__version__ >= '1.5.0' else 2 | |
| self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, | |
| kernel_size=3, padding=padding, padding_mode='circular', bias=False) | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv1d): | |
| nn.init.kaiming_normal_( | |
| m.weight, mode='fan_in', nonlinearity='leaky_relu') | |
| def forward(self, x): | |
| x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2) | |
| return x | |
| class TemporalEmbedding(nn.Module): | |
| def __init__(self, d_model, embed_type='fixed', freq='h'): | |
| super(TemporalEmbedding, self).__init__() | |
| minute_size = 4 | |
| hour_size = 24 | |
| weekday_size = 7 | |
| day_size = 32 | |
| month_size = 13 | |
| Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding | |
| if freq == 't': | |
| self.minute_embed = Embed(minute_size, d_model) | |
| self.hour_embed = Embed(hour_size, d_model) | |
| self.weekday_embed = Embed(weekday_size, d_model) | |
| self.day_embed = Embed(day_size, d_model) | |
| self.month_embed = Embed(month_size, d_model) | |
| def forward(self, x): | |
| x = x.long() | |
| minute_x = self.minute_embed(x[:, :, 4]) if hasattr( | |
| self, 'minute_embed') else 0. | |
| hour_x = self.hour_embed(x[:, :, 3]) | |
| weekday_x = self.weekday_embed(x[:, :, 2]) | |
| day_x = self.day_embed(x[:, :, 1]) | |
| month_x = self.month_embed(x[:, :, 0]) | |
| return hour_x + weekday_x + day_x + month_x + minute_x | |
| class FixedEmbedding(nn.Module): | |
| def __init__(self, c_in, d_model): | |
| super(FixedEmbedding, self).__init__() | |
| w = torch.zeros(c_in, d_model).float() | |
| w.require_grad = False | |
| position = torch.arange(0, c_in).float().unsqueeze(1) | |
| div_term = (torch.arange(0, d_model, 2).float() | |
| * -(math.log(10000.0) / d_model)).exp() | |
| w[:, 0::2] = torch.sin(position * div_term) | |
| w[:, 1::2] = torch.cos(position * div_term) | |
| self.emb = nn.Embedding(c_in, d_model) | |
| self.emb.weight = nn.Parameter(w, requires_grad=False) | |
| def forward(self, x): | |
| return self.emb(x).detach() | |
| class TimeFeatureEmbedding(nn.Module): | |
| def __init__(self, d_model, embed_type='timeF', freq='h'): | |
| super(TimeFeatureEmbedding, self).__init__() | |
| freq_map = {'h': 4, 't': 5, 's': 6, | |
| 'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3} | |
| d_inp = freq_map[freq] | |
| self.embed = nn.Linear(d_inp, d_model, bias=False) | |
| def forward(self, x): | |
| return self.embed(x) | |
| class DataEmbedding(nn.Module): | |
| def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1): | |
| super(DataEmbedding, self).__init__() | |
| self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model) | |
| self.position_embedding = PositionalEmbedding(d_model=d_model) | |
| self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, | |
| freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding( | |
| d_model=d_model, embed_type=embed_type, freq=freq) | |
| self.dropout = nn.Dropout(p=dropout) | |
| def forward(self, x, x_mark): | |
| if x_mark is None: | |
| x = self.value_embedding(x) + self.position_embedding(x) | |
| else: | |
| x = self.value_embedding( | |
| x) + self.temporal_embedding(x_mark) + self.position_embedding(x) | |
| return self.dropout(x) | |
| def adjust_learning_rate(optimizer, epoch, lradj, learning_rate): | |
| # lr = args.learning_rate * (0.2 ** (epoch // 2)) | |
| if lradj == 'type1': | |
| lr_adjust = {epoch: learning_rate * (0.5 ** ((epoch - 1) // 1))} | |
| elif lradj == 'type2': | |
| lr_adjust = { | |
| 2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, | |
| 10: 5e-7, 15: 1e-7, 20: 5e-8 | |
| } | |
| if epoch in lr_adjust.keys(): | |
| lr = lr_adjust[epoch] | |
| for param_group in optimizer.param_groups: | |
| param_group['lr'] = lr | |
| print('Updating learning rate to {}'.format(lr)) | |
| def min_memory_id(): | |
| output = sp.check_output(["/usr/bin/nvidia-smi", "--query-gpu=memory.used", "--format=csv"]) | |
| memory = [int(s.split(" ")[0]) for s in output.decode().split("\n")[1:-1]] | |
| assert len(memory) == torch.cuda.device_count() | |
| return np.argmin(memory) | |
| def get_gpu(cuda): | |
| if cuda == True and torch.cuda.is_available(): | |
| try: | |
| device = torch.device(f"cuda:{min_memory_id()}") | |
| torch.cuda.set_device(device) | |
| print(f"----- Using GPU {torch.cuda.current_device()} -----") | |
| except: | |
| device = torch.device("cuda") | |
| print(f"----- Using GPU {torch.cuda.get_device_name()} -----") | |
| else: | |
| if cuda == True and not torch.cuda.is_available(): | |
| print("----- GPU is unavailable -----") | |
| device = torch.device("cpu") | |
| print("----- Using CPU -----") | |
| return device |