Spaces:
Running
Running
File size: 9,072 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import datetime
import itertools
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, DistributedSampler
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import random
import numpy as np
from typing import Tuple, List, Dict, Any, Union, Optional
from dataclasses import dataclass
from .dataset import ChatTSTimeRCDPretrainDataset
from .ts_encoder_bi_bias import TimeSeriesEncoder
from .time_rcd_config import TimeRCDConfig, default_config
import warnings
warnings.filterwarnings("ignore")
@dataclass
class PretrainBatch:
"""Batch structure for pretraining tasks."""
time_series: torch.Tensor
labels: torch.Tensor
masked_time_series: torch.Tensor
mask_indices: torch.Tensor
class TimeSeriesPretrainModel(nn.Module):
"""Model for time series pretraining with masked reconstruction and anomaly detection."""
def __init__(self, config: TimeRCDConfig):
super().__init__()
self.config = config
# Extract TimeSeriesEncoder parameters from config
ts_config = config.ts_config
self.ts_encoder = TimeSeriesEncoder(
d_model=ts_config.d_model,
d_proj=ts_config.d_proj,
patch_size=ts_config.patch_size,
num_layers=ts_config.num_layers,
num_heads=ts_config.num_heads,
d_ff_dropout=ts_config.d_ff_dropout,
use_rope=ts_config.use_rope,
num_features=ts_config.num_features,
activation=ts_config.activation
)
# Masked reconstruction head
self.reconstruction_head = nn.Sequential(
nn.Linear(config.ts_config.d_proj, config.ts_config.d_proj * 4),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.ts_config.d_proj * 4, config.ts_config.d_proj * 4),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.ts_config.d_proj * 4, 1) # (B, seq_len, num_features, 1)
)
self.reconstruction_head.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.xavier_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
def forward(self, time_series: torch.Tensor, mask: Optional[torch.Tensor] = None):
"""Forward pass through the encoder."""
local_embeddings = self.ts_encoder(time_series, mask)
return local_embeddings
def masked_reconstruction_loss(self,
local_embeddings: torch.Tensor, # (B, seq_len, num_features, d_proj)
original_time_series: torch.Tensor, # (B, seq_len, num_features),
mask: torch.Tensor # (B, seq_len)
) -> torch.Tensor:
"""Compute masked reconstruction loss."""
batch_size, seq_len, num_features = original_time_series.shape
patch_size = self.config.ts_config.patch_size
mask = mask.bool()
# local_embeddings: [B, seq_len, num_features, d_proj]
reconstructed = self.reconstruction_head(local_embeddings) # (B, seq_len, num_features, 1)
reconstructed = reconstructed.view(batch_size, seq_len, num_features)
mask_expanded = mask.unsqueeze(-1).expand(-1, -1, num_features) # (B, seq_len, num_features)
reconstruction_loss = F.mse_loss(
reconstructed[mask_expanded],
original_time_series[mask_expanded]
)
return reconstruction_loss
def create_random_mask(time_series: torch.Tensor, #(B, max_seq_len, num_features)
attention_mask: torch.Tensor, # (B, max_seq_len)
mask_ratio: float = 0.15) -> Tuple[torch.Tensor, torch.Tensor]:
"""Create random mask for time series patches, only masking valid sequence parts."""
batch_size, seq_len, num_features = time_series.shape
patch_size = default_config.ts_config.patch_size
mask = torch.zeros(batch_size, seq_len) # (B, max_seq_len)
for i in range(batch_size):
# Get valid sequence length for this sample
valid_length = attention_mask[i].sum().item()
# Calculate number of patches in valid sequence
num_valid_patches = (valid_length - 1) // patch_size + 1
num_masked = int(num_valid_patches * mask_ratio)
if num_masked > 0:
# Only select patches from valid sequence
masked_patches = torch.randperm(num_valid_patches)[:num_masked]
for j in masked_patches:
start_idx = j * patch_size
end_idx = min((j + 1) * patch_size, valid_length) # Don't exceed valid length
mask[i, start_idx:end_idx] = 1
# Create masked time series - only mask valid parts
masked_time_series = time_series.clone()
mask_indices = mask.bool() & attention_mask # Only mask where both mask and attention_mask are True
mask_expanded = mask_indices.unsqueeze(-1).expand(-1, -1, num_features) # (B, max_seq_len, num_features)
masked_time_series[mask_expanded] = torch.randn_like(masked_time_series[mask_expanded]) * 0.1
# Update mask to only include valid parts
mask = mask * attention_mask.float()
return masked_time_series, mask # (B, max_seq_len, num_features), (B, max_seq_len)
def collate_fn(batch):
"""Collate function for pretraining dataset."""
time_series_list, normal_time_series_list, labels_list, attribute_list = zip(*batch)
# Convert to tensors and pad sequences
if time_series_list[0].ndim == 1:
time_series_tensors = [ts.unsqueeze(-1) for ts in time_series_list] # Add feature dimension
normal_time_series_tensors = [nts.unsqueeze(-1) for nts in normal_time_series_list]
else:
time_series_tensors = [ts for ts in time_series_list]
normal_time_series_tensors = [nts for nts in normal_time_series_list]
# standardize time series
# concatenated = torch.cat(time_series_tensors, dim=0) # (total_length, num_features)
# mean = concatenated.mean(dim=0, keepdim=True) # (1, num_features)
# std = concatenated.std(dim=0, keepdim=True) # (1, num_features)
# std = std + 1e-4
# time_series_tensors_std = [(ts - mean) / std for ts in time_series_tensors]
# normal_time_series_tensors_std = [(nts - mean) / std for nts in normal_time_series_tensors]
# time_series_tensors = time_series_tensors_std
# normal_time_series_tensors = normal_time_series_tensors_std
means = []
stds = []
for i in range(len(time_series_tensors)):
ts = time_series_tensors[i]
mean = ts.mean(dim=0, keepdim=True)
std = ts.std(dim=0, keepdim=True) + 1e-4
means.append(mean)
stds.append(std)
time_series_tensors[i] = (ts - mean) / std
for i in range(len(normal_time_series_tensors)):
nts = normal_time_series_tensors[i]
mean = means[i]
std = stds[i]
normal_time_series_tensors[i] = (nts - mean) / std
# labels_tensor = torch.stack(labels_list)
labels = [label for label in labels_list]
# Pad time series to same length
padded_time_series = torch.nn.utils.rnn.pad_sequence(
time_series_tensors, batch_first=True, padding_value=0.0
) # (B, max_seq_len, num_features)
padded_normal_time_series = torch.nn.utils.rnn.pad_sequence(
normal_time_series_tensors, batch_first=True, padding_value=0.0
) # (B, max_seq_len, num_features)
padded_labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=-1
) # (B, max_seq_len)
sequence_lengths = [ts.size(0) for ts in time_series_tensors]
B, max_seq_len, num_features = padded_time_series.shape
attention_mask = torch.zeros(B, max_seq_len, dtype=torch.bool) # (B, max_seq_len)
for i, length in enumerate(sequence_lengths):
attention_mask[i, :length] = True
# Create random masks for reconstruction task - only mask valid sequence parts
masked_time_series, mask = create_random_mask(padded_time_series, attention_mask)
return {
'time_series': padded_time_series,
'normal_time_series': padded_normal_time_series,
'masked_time_series': masked_time_series,
'mask': mask, # for reconstruction task
'labels': padded_labels,
'attention_mask': attention_mask, # for padding
'attribute': attribute_list
}
def set_seed(seed: int) -> None:
"""Set random seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False |