Spaces:
Running
Running
File size: 13,643 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
"""
This function is adapted from [NeurIPS2023-One-Fits-All] by [tianzhou2011]
Original source: [https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All]
"""
import argparse
from typing import Dict
import numpy as np
import torchinfo
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.nn.utils import weight_norm
import tqdm
import os, math
from typing import Optional
import torch.nn.functional as F
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
from einops import rearrange
from ..utils.torch_utility import EarlyStoppingTorch, PositionalEmbedding, TokenEmbedding, TemporalEmbedding, get_gpu, TimeFeatureEmbedding, DataEmbedding, adjust_learning_rate
from ..utils.dataset import ReconstructDataset
class DataEmbedding_wo_pos(nn.Module):
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
super(DataEmbedding_wo_pos, self).__init__()
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
self.position_embedding = PositionalEmbedding(d_model=d_model)
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
d_model=d_model, embed_type=embed_type, freq=freq)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x, x_mark):
if x_mark is None:
x = self.value_embedding(x)
else:
x = self.value_embedding(x) + self.temporal_embedding(x_mark)
return self.dropout(x)
class PatchEmbedding(nn.Module):
def __init__(self, d_model, patch_len, stride, dropout):
super(PatchEmbedding, self).__init__()
# Patching
self.patch_len = patch_len
self.stride = stride
self.padding_patch_layer = nn.ReplicationPad1d((0, stride))
# Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
self.value_embedding = TokenEmbedding(patch_len, d_model)
# Positional embedding
self.position_embedding = PositionalEmbedding(d_model)
# Residual dropout
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# do patching
n_vars = x.shape[1]
x = self.padding_patch_layer(x)
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
# Input encoding
x = self.value_embedding(x) + self.position_embedding(x)
return self.dropout(x), n_vars
class DataEmbedding_wo_time(nn.Module):
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
super(DataEmbedding_wo_time, self).__init__()
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
self.position_embedding = PositionalEmbedding(d_model=d_model)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
x = self.value_embedding(x) + self.position_embedding(x)
return self.dropout(x)
class Model(nn.Module):
def __init__(self,
pred_len=0,
seq_len=100,
patch_size=1,
stride=1,
d_model = 768,
d_ff = 768,
embed = "timeF",
gpt_layers = 6,
enc_in = 1,
c_out = 1,
freq = "h",
dropout= 0.1,
mlp = 0,
model_path = "pre_train"):
super(Model, self).__init__()
self.pred_len = pred_len
self.seq_len = seq_len
self.patch_size = patch_size
self.stride = stride
self.seq_len = seq_len
self.d_ff = d_ff
self.d_model = d_model
self.embed = embed
self.gpt_layers = gpt_layers
self.enc_in = enc_in
self.c_out = c_out
self.freq = freq
self.dropout = dropout
self.model_path = model_path
self.mlp = mlp
self.patch_num = (self.seq_len + self.pred_len - self.patch_size) // self.stride + 1
self.padding_patch_layer = nn.ReplicationPad1d((0, self.stride))
self.patch_num += 1
self.enc_embedding = DataEmbedding(self.enc_in * self.patch_size, self.d_model, self.embed, self.freq,
self.dropout)
self.gpt2 = GPT2Model.from_pretrained('gpt2', output_attentions=True, output_hidden_states=True)
self.gpt2.h = self.gpt2.h[:self.gpt_layers]
for i, (name, param) in enumerate(self.gpt2.named_parameters()):
if 'ln' in name or 'wpe' in name: # or 'mlp' in name:
param.requires_grad = True
elif 'mlp' in name and self.mlp == 1:
param.requires_grad = True
else:
param.requires_grad = False
# if configs.use_gpu:
# device = torch.device('cuda:{}'.format(0))
# self.gpt2.to(device=device)
self.ln_proj = nn.LayerNorm(self.d_ff)
self.out_layer = nn.Linear(
self.d_ff,
self.c_out,
bias=True)
def forward(self, x_enc):
dec_out = self.anomaly_detection(x_enc)
return dec_out # [B, L, D]
def anomaly_detection(self, x_enc):
B, L, M = x_enc.shape
# Normalization from Non-stationary Transformer
seg_num = 25
x_enc = rearrange(x_enc, 'b (n s) m -> b n s m', s=seg_num)
means = x_enc.mean(2, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(
torch.var(x_enc, dim=2, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
x_enc = rearrange(x_enc, 'b n s m -> b (n s) m')
# means = x_enc.mean(1, keepdim=True).detach()
# x_enc = x_enc - means
# stdev = torch.sqrt(
# torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
# x_enc /= stdev
# enc_out = self.enc_embedding(x_enc, None) # [B,T,C]
enc_out = torch.nn.functional.pad(x_enc, (0, 768-x_enc.shape[-1]))
outputs = self.gpt2(inputs_embeds=enc_out).last_hidden_state
outputs = outputs[:, :, :self.d_ff]
# outputs = self.ln_proj(outputs)
dec_out = self.out_layer(outputs)
# De-Normalization from Non-stationary Transformer
dec_out = rearrange(dec_out, 'b (n s) m -> b n s m', s=seg_num)
dec_out = dec_out * \
(stdev[:, :, 0, :].unsqueeze(2).repeat(
1, 1, seg_num, 1))
dec_out = dec_out + \
(means[:, :, 0, :].unsqueeze(2).repeat(
1, 1, seg_num, 1))
dec_out = rearrange(dec_out, 'b n s m -> b (n s) m')
# dec_out = dec_out * \
# (stdev[:, 0, :].unsqueeze(1).repeat(
# 1, self.pred_len + self.seq_len, 1))
# dec_out = dec_out + \
# (means[:, 0, :].unsqueeze(1).repeat(
# 1, self.pred_len + self.seq_len, 1))
return dec_out
class OFA():
def __init__(self,
win_size = 100,
stride = 1,
enc_in = 1,
features = 'M',
batch_size = 128,
learning_rate = 0.0001,
epochs = 10,
patience = 3,
lradj = "type1",
validation_size=0.2):
super().__init__()
self.win_size = win_size
self.stride = stride
self.enc_in = enc_in
self.features = features
self.batch_size = batch_size
self.learning_rate = learning_rate
self.epochs = epochs
self.patience = patience
self.lradj = lradj
self.validation_size = validation_size
self.decision_scores_ = None
cuda = True
self.y_hats = None
self.cuda = cuda
self.device = get_gpu(self.cuda)
self.model = Model(seq_len=self.win_size, enc_in=self.enc_in, c_out=self.enc_in).float().to(self.device)
self.model_optim = optim.Adam(self.model.parameters(), lr=self.learning_rate)
self.criterion = nn.MSELoss()
self.early_stopping = EarlyStoppingTorch(None, patience=self.patience)
self.input_shape = (self.batch_size, self.win_size, self.enc_in)
def fit(self, data):
tsTrain = data[:int((1-self.validation_size)*len(data))]
tsValid = data[int((1-self.validation_size)*len(data)):]
train_loader = DataLoader(
dataset=ReconstructDataset(tsTrain, window_size=self.win_size, stride=self.stride),
batch_size=self.batch_size,
shuffle=True
)
valid_loader = DataLoader(
dataset=ReconstructDataset(tsValid, window_size=self.win_size, stride=self.stride),
batch_size=self.batch_size,
shuffle=False
)
train_steps = len(train_loader)
for epoch in range(1, self.epochs + 1):
## Training
train_loss = 0
self.model.train()
loop = tqdm.tqdm(enumerate(train_loader),total=len(train_loader),leave=True)
for i, (batch_x, _) in loop:
self.model_optim.zero_grad()
batch_x = batch_x.float().to(self.device)
outputs = self.model(batch_x)
loss = self.criterion(outputs, batch_x)
loss.backward()
self.model_optim.step()
train_loss += loss.cpu().item()
loop.set_description(f'Training Epoch [{epoch}/{self.epochs}]')
loop.set_postfix(loss=loss.item(), avg_loss=train_loss/(i+1))
## Validation
self.model.eval()
total_loss = []
loop = tqdm.tqdm(enumerate(valid_loader),total=len(valid_loader),leave=True)
with torch.no_grad():
for i, (batch_x, _) in loop:
batch_x = batch_x.float().to(self.device)
outputs = self.model(batch_x)
f_dim = -1 if self.features == 'MS' else 0
outputs = outputs[:, :, f_dim:]
pred = outputs.detach().cpu()
true = batch_x.detach().cpu()
loss = self.criterion(pred, true)
total_loss.append(loss)
loop.set_description(f'Valid Epoch [{epoch}/{self.epochs}]')
valid_loss = np.average(total_loss)
loop.set_postfix(loss=loss.item(), valid_loss=valid_loss)
self.early_stopping(valid_loss, self.model)
if self.early_stopping.early_stop:
print(" Early stopping<<<")
break
adjust_learning_rate(self.model_optim, epoch + 1, self.lradj, self.learning_rate)
def decision_function(self, data):
test_loader = DataLoader(
dataset=ReconstructDataset(data, window_size=self.win_size, stride=self.stride),
batch_size=self.batch_size,
shuffle=False
)
self.model.eval()
attens_energy = []
y_hats = []
self.anomaly_criterion = nn.MSELoss(reduce=False)
loop = tqdm.tqdm(enumerate(test_loader),total=len(test_loader),leave=True)
with torch.no_grad():
for i, (batch_x, _) in loop:
batch_x = batch_x.float().to(self.device)
# reconstruction
outputs = self.model(batch_x)
# # criterion
# print('batch_x: ', batch_x.shape)
# print('outputs: ', outputs.shape)
score = torch.mean(self.anomaly_criterion(batch_x, outputs), dim=-1)
y_hat = torch.squeeze(outputs, -1)
score = score.detach().cpu().numpy()[:, -1]
y_hat = y_hat.detach().cpu().numpy()[:, -1]
attens_energy.append(score)
y_hats.append(y_hat)
loop.set_description(f'Testing Phase: ')
attens_energy = np.concatenate(attens_energy, axis=0).reshape(-1)
scores = np.array(attens_energy)
y_hats = np.concatenate(y_hats, axis=0).reshape(-1)
y_hats = np.array(y_hats)
assert scores.ndim == 1
import shutil
self.save_path = None
if self.save_path and os.path.exists(self.save_path):
shutil.rmtree(self.save_path)
# Custom stride length
scores_win = [scores[i] for i in range(scores.shape[0])]
self.decision_scores_ = np.zeros(len(data))
count = np.zeros(len(data))
for i, score in enumerate(scores_win):
start = i * self.stride
end = start + self.win_size
self.decision_scores_[start:end] += score
count[start:end] += 1
self.decision_scores_ = self.decision_scores_ / np.maximum(count, 1)
return self.decision_scores_
def param_statistic(self, save_file):
model_stats = torchinfo.summary(self.model, self.input_shape, verbose=0)
with open(save_file, 'w') as f:
f.write(str(model_stats))
|