File size: 13,643 Bytes
d03866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
"""
This function is adapted from [NeurIPS2023-One-Fits-All] by [tianzhou2011]
Original source: [https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All]
"""

import argparse
from typing import Dict
import numpy as np
import torchinfo
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.nn.utils import weight_norm
import tqdm
import os, math
from typing import Optional
import torch.nn.functional as F

from transformers.models.gpt2.modeling_gpt2 import GPT2Model
from einops import rearrange


from ..utils.torch_utility import EarlyStoppingTorch, PositionalEmbedding, TokenEmbedding, TemporalEmbedding, get_gpu, TimeFeatureEmbedding, DataEmbedding, adjust_learning_rate
from ..utils.dataset import ReconstructDataset    

class DataEmbedding_wo_pos(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding_wo_pos, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
                                                    freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
            d_model=d_model, embed_type=embed_type, freq=freq)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        if x_mark is None:
            x = self.value_embedding(x)
        else:
            x = self.value_embedding(x) + self.temporal_embedding(x_mark)
        return self.dropout(x)

class PatchEmbedding(nn.Module):
    def __init__(self, d_model, patch_len, stride, dropout):
        super(PatchEmbedding, self).__init__()
        # Patching
        self.patch_len = patch_len
        self.stride = stride
        self.padding_patch_layer = nn.ReplicationPad1d((0, stride))

        # Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
        self.value_embedding = TokenEmbedding(patch_len, d_model)

        # Positional embedding
        self.position_embedding = PositionalEmbedding(d_model)

        # Residual dropout
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # do patching
        n_vars = x.shape[1]
        x = self.padding_patch_layer(x)
        x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
        x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
        # Input encoding
        x = self.value_embedding(x) + self.position_embedding(x)
        return self.dropout(x), n_vars

class DataEmbedding_wo_time(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding_wo_time, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x):
        x = self.value_embedding(x) + self.position_embedding(x)
        return self.dropout(x)

class Model(nn.Module):
    
    def __init__(self,
                 pred_len=0,
                 seq_len=100,
                 patch_size=1,
                 stride=1,      
                 d_model = 768,
                 d_ff = 768,
                 embed = "timeF",
                 gpt_layers = 6,
                 enc_in = 1,
                 c_out = 1,
                 freq = "h",
                 dropout= 0.1,
                 mlp = 0,
                 model_path = "pre_train"):
        super(Model, self).__init__()
        self.pred_len = pred_len
        self.seq_len = seq_len
        self.patch_size = patch_size
        self.stride = stride
        self.seq_len = seq_len
        self.d_ff = d_ff
        self.d_model = d_model
        self.embed = embed
        self.gpt_layers = gpt_layers
        self.enc_in = enc_in
        self.c_out = c_out
        self.freq = freq
        self.dropout = dropout
        self.model_path = model_path
        self.mlp = mlp
    
        self.patch_num = (self.seq_len + self.pred_len - self.patch_size) // self.stride + 1

        self.padding_patch_layer = nn.ReplicationPad1d((0, self.stride)) 
        self.patch_num += 1
        self.enc_embedding = DataEmbedding(self.enc_in * self.patch_size, self.d_model, self.embed, self.freq,
                                           self.dropout)

        self.gpt2 = GPT2Model.from_pretrained('gpt2', output_attentions=True, output_hidden_states=True)    
        self.gpt2.h = self.gpt2.h[:self.gpt_layers]
        
        for i, (name, param) in enumerate(self.gpt2.named_parameters()):
            if 'ln' in name or 'wpe' in name: # or 'mlp' in name:
                param.requires_grad = True
            elif 'mlp' in name and self.mlp == 1:
                param.requires_grad = True
            else:
                param.requires_grad = False

        # if configs.use_gpu:
        #     device = torch.device('cuda:{}'.format(0))
        #     self.gpt2.to(device=device)

        self.ln_proj = nn.LayerNorm(self.d_ff)
        self.out_layer = nn.Linear(
            self.d_ff, 
            self.c_out, 
            bias=True)

    def forward(self, x_enc):
        dec_out = self.anomaly_detection(x_enc)
        return dec_out  # [B, L, D]

    def anomaly_detection(self, x_enc):
        B, L, M = x_enc.shape
        
        # Normalization from Non-stationary Transformer

        seg_num = 25
        x_enc = rearrange(x_enc, 'b (n s) m -> b n s m', s=seg_num)
        means = x_enc.mean(2, keepdim=True).detach()
        x_enc = x_enc - means
        stdev = torch.sqrt(
            torch.var(x_enc, dim=2, keepdim=True, unbiased=False) + 1e-5)
        x_enc /= stdev
        x_enc = rearrange(x_enc, 'b n s m -> b (n s) m')

        # means = x_enc.mean(1, keepdim=True).detach()
        # x_enc = x_enc - means
        # stdev = torch.sqrt(
        #     torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
        # x_enc /= stdev

        # enc_out = self.enc_embedding(x_enc, None)  # [B,T,C]
        enc_out = torch.nn.functional.pad(x_enc, (0, 768-x_enc.shape[-1]))
        
        outputs = self.gpt2(inputs_embeds=enc_out).last_hidden_state
        
        outputs = outputs[:, :, :self.d_ff]
        # outputs = self.ln_proj(outputs)
        dec_out = self.out_layer(outputs)

        # De-Normalization from Non-stationary Transformer

        dec_out = rearrange(dec_out, 'b (n s) m -> b n s m', s=seg_num)
        dec_out = dec_out * \
                  (stdev[:, :, 0, :].unsqueeze(2).repeat(
                      1, 1, seg_num, 1))
        dec_out = dec_out + \
                  (means[:, :, 0, :].unsqueeze(2).repeat(
                      1, 1, seg_num, 1))
        dec_out = rearrange(dec_out, 'b n s m -> b (n s) m')

        # dec_out = dec_out * \
        #           (stdev[:, 0, :].unsqueeze(1).repeat(
        #               1, self.pred_len + self.seq_len, 1))
        # dec_out = dec_out + \
        #           (means[:, 0, :].unsqueeze(1).repeat(
        #               1, self.pred_len + self.seq_len, 1))
        return dec_out

class OFA():
    def __init__(self,
                 win_size = 100,
                 stride = 1,
                 enc_in = 1,
                 features = 'M',
                 batch_size = 128,
                 learning_rate = 0.0001,
                 epochs = 10,
                 patience = 3,
                 lradj = "type1",
                 validation_size=0.2):
        super().__init__()
        self.win_size = win_size
        self.stride = stride
        self.enc_in = enc_in
        self.features = features
        self.batch_size = batch_size
        self.learning_rate = learning_rate
        self.epochs = epochs
        self.patience = patience
        self.lradj = lradj
        self.validation_size = validation_size

        self.decision_scores_ = None
        
        cuda = True
        self.y_hats = None
        
        self.cuda = cuda
        self.device = get_gpu(self.cuda)
            
        self.model = Model(seq_len=self.win_size, enc_in=self.enc_in, c_out=self.enc_in).float().to(self.device)
        self.model_optim = optim.Adam(self.model.parameters(), lr=self.learning_rate)
        self.criterion = nn.MSELoss()
        
        self.early_stopping = EarlyStoppingTorch(None, patience=self.patience)
        self.input_shape = (self.batch_size, self.win_size, self.enc_in)
        
    def fit(self, data):
        tsTrain = data[:int((1-self.validation_size)*len(data))]
        tsValid = data[int((1-self.validation_size)*len(data)):]

        train_loader = DataLoader(
            dataset=ReconstructDataset(tsTrain, window_size=self.win_size, stride=self.stride),
            batch_size=self.batch_size,
            shuffle=True
        )
        
        valid_loader = DataLoader(
            dataset=ReconstructDataset(tsValid, window_size=self.win_size, stride=self.stride),
            batch_size=self.batch_size,
            shuffle=False
        )
        
        train_steps = len(train_loader)
        for epoch in range(1, self.epochs + 1):
            ## Training
            train_loss = 0
            self.model.train()
            
            loop = tqdm.tqdm(enumerate(train_loader),total=len(train_loader),leave=True)
            for i, (batch_x, _) in loop:
                self.model_optim.zero_grad()
                
                batch_x = batch_x.float().to(self.device)
                
                outputs = self.model(batch_x)
                loss = self.criterion(outputs, batch_x)
                
                loss.backward()
                self.model_optim.step()
                
                train_loss += loss.cpu().item()
                
                loop.set_description(f'Training Epoch [{epoch}/{self.epochs}]')
                loop.set_postfix(loss=loss.item(), avg_loss=train_loss/(i+1))
            
            ## Validation
            self.model.eval()
            total_loss = []
            
            loop = tqdm.tqdm(enumerate(valid_loader),total=len(valid_loader),leave=True)
            with torch.no_grad():
                for i, (batch_x, _) in loop:
                    batch_x = batch_x.float().to(self.device)

                    outputs = self.model(batch_x)
                    f_dim = -1 if self.features == 'MS' else 0
                    outputs = outputs[:, :, f_dim:]
                    pred = outputs.detach().cpu()
                    true = batch_x.detach().cpu()

                    loss = self.criterion(pred, true)
                    total_loss.append(loss)
                    loop.set_description(f'Valid Epoch [{epoch}/{self.epochs}]')
                    
            valid_loss = np.average(total_loss)
            loop.set_postfix(loss=loss.item(), valid_loss=valid_loss)
            self.early_stopping(valid_loss, self.model)
            if self.early_stopping.early_stop:
                print("   Early stopping<<<")
                break
            
            adjust_learning_rate(self.model_optim, epoch + 1, self.lradj, self.learning_rate)
                
            
    def decision_function(self, data):
        test_loader = DataLoader(
            dataset=ReconstructDataset(data, window_size=self.win_size, stride=self.stride),
            batch_size=self.batch_size,
            shuffle=False
        )
        
        self.model.eval()
        attens_energy = []
        y_hats = []
        self.anomaly_criterion = nn.MSELoss(reduce=False)
        
        loop = tqdm.tqdm(enumerate(test_loader),total=len(test_loader),leave=True)
        with torch.no_grad():
            for i, (batch_x, _) in loop:
                batch_x = batch_x.float().to(self.device)
                # reconstruction
                outputs = self.model(batch_x)
                # # criterion
                # print('batch_x: ', batch_x.shape)
                # print('outputs: ', outputs.shape)
                score = torch.mean(self.anomaly_criterion(batch_x, outputs), dim=-1)
                y_hat = torch.squeeze(outputs, -1)
                
                score = score.detach().cpu().numpy()[:, -1]
                y_hat = y_hat.detach().cpu().numpy()[:, -1]
                
                attens_energy.append(score)
                y_hats.append(y_hat)
                loop.set_description(f'Testing Phase: ')

        attens_energy = np.concatenate(attens_energy, axis=0).reshape(-1)
        scores = np.array(attens_energy)
        
        y_hats = np.concatenate(y_hats, axis=0).reshape(-1)
        y_hats = np.array(y_hats)

        assert scores.ndim == 1
        
        import shutil
        self.save_path = None
        if self.save_path and os.path.exists(self.save_path):
            shutil.rmtree(self.save_path)
        
        # Custom stride length
        scores_win = [scores[i] for i in range(scores.shape[0])]
        self.decision_scores_ = np.zeros(len(data))
        count = np.zeros(len(data))
        for i, score in enumerate(scores_win):
            start = i * self.stride
            end = start + self.win_size
            self.decision_scores_[start:end] += score
            count[start:end] += 1
        self.decision_scores_ = self.decision_scores_ / np.maximum(count, 1)

        return self.decision_scores_
    
    def param_statistic(self, save_file):
        model_stats = torchinfo.summary(self.model, self.input_shape, verbose=0)
        with open(save_file, 'w') as f:
            f.write(str(model_stats))