File size: 9,096 Bytes
d03866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
This function is adapted from [moment] by [mononitogoswami]
Original source: [https://github.com/moment-timeseries-foundation-model/moment]
"""

from momentfm import MOMENTPipeline
from momentfm.utils.masking import Masking
from momentfm.utils.utils import control_randomness
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch import nn
import math

from .base import BaseDetector
from ..utils.dataset import ReconstructDataset_Moment
from ..utils.torch_utility import EarlyStoppingTorch, get_gpu

class MOMENT(BaseDetector):
    def __init__(self, 
                 win_size=256, 
                 input_c=1, 
                 batch_size=128,
                 epochs=2,
                 validation_size=0,
                 lr=1e-4):

        self.model_name = 'MOMENT'
        self.win_size = win_size
        self.input_c = input_c
        self.batch_size = batch_size
        self.anomaly_criterion = nn.MSELoss(reduce=False)
        self.epochs = epochs
        self.validation_size = validation_size
        self.lr = lr

        cuda = True        
        self.cuda = cuda
        self.device = get_gpu(self.cuda)

        # Control randomness for reproducibility
        control_randomness(seed=42)

        # Load the model properly with config
        try:
            self.model = MOMENTPipeline.from_pretrained(
                "AutonLab/MOMENT-1-base",
                model_kwargs={
                    "task_name": "reconstruction",
                    "n_channels": self.input_c,
                    "max_seq_len": self.win_size
                }
            )
            self.model.init()
        except Exception as e:
            # Fallback: try alternative initialization
            print(f"Failed to load MOMENT model with from_pretrained: {e}")
            print("Attempting alternative initialization...")
            from transformers import AutoConfig
            config = AutoConfig.from_pretrained("AutonLab/MOMENT-1-base")
            config.task_name = "reconstruction"
            config.n_channels = self.input_c
            config.max_seq_len = self.win_size
            self.model = MOMENTPipeline(config)
            self.model.init()

        self.model = self.model.to(self.device).float()
        # Optimize Mean Squarred Error using your favourite optimizer
        self.criterion = torch.nn.MSELoss() 
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
        self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=5, gamma=0.75)
        self.save_path = None
        self.early_stopping = EarlyStoppingTorch(save_path=self.save_path, patience=3)

    def zero_shot(self, data):

        test_loader = DataLoader(
            dataset=ReconstructDataset_Moment(data, window_size=self.win_size, normalize=True),
            batch_size=self.batch_size,
            shuffle=False)

        trues, preds = [], []
        self.score_list = []
        with torch.no_grad():
            for batch_x, batch_masks in tqdm(test_loader, total=len(test_loader)):
                batch_x = batch_x.to("cuda").float()
                batch_masks = batch_masks.to("cuda")
                batch_x = batch_x.permute(0,2,1)

                # print('batch_x: ', batch_x.shape)             # [batch_size, n_channels, window_size]
                # print('batch_masks: ', batch_masks.shape)     # [batch_size, window_size]

                output = self.model(x_enc=batch_x, input_mask=batch_masks) # [batch_size, n_channels, window_size]
                score = torch.mean(self.anomaly_criterion(batch_x, output.reconstruction), dim=-1).detach().cpu().numpy()[:, -1]
                self.score_list.append(score)

        self.__anomaly_score = np.concatenate(self.score_list, axis=0).reshape(-1)

        if self.__anomaly_score.shape[0] < len(data):
            self.__anomaly_score = np.array([self.__anomaly_score[0]]*math.ceil((self.win_size-1)/2) + 
                        list(self.__anomaly_score) + [self.__anomaly_score[-1]]*((self.win_size-1)//2))
        self.decision_scores_ = self.__anomaly_score


    def fit(self, data):
        tsTrain = data[:int((1-self.validation_size)*len(data))]
        tsValid = data[int((1-self.validation_size)*len(data)):]

        train_loader = DataLoader(
            dataset=ReconstructDataset_Moment(tsTrain, window_size=self.win_size),
            batch_size=self.batch_size,
            shuffle=True
        )
        
        valid_loader = DataLoader(
            dataset=ReconstructDataset_Moment(tsValid, window_size=self.win_size),
            batch_size=self.batch_size,
            shuffle=False
        )

        mask_generator = Masking(mask_ratio=0.3) # Mask 30% of patches randomly 


        for epoch in range(1, self.epochs + 1):
            self.model.train()
            for batch_x, batch_masks in tqdm(train_loader, total=len(train_loader)):
                batch_x = batch_x.to(self.device).float()
                batch_x = batch_x.permute(0,2,1)
                # print('batch_x: ', batch_x.shape)

                original = batch_x
                n_channels = batch_x.shape[1]
                
                # Reshape to [batch_size * n_channels, 1, window_size]
                batch_x = batch_x.reshape((-1, 1, self.win_size)) 
                
                batch_masks = batch_masks.to(self.device).long()
                batch_masks = batch_masks.repeat_interleave(n_channels, axis=0)
                
                # Randomly mask some patches of data
                mask = mask_generator.generate_mask(
                    x=batch_x, input_mask=batch_masks).to(self.device).long()
                
                mask = torch.nn.functional.pad(mask, (0, batch_masks.size(1) - mask.size(1)), mode='constant', value=1)

                # Forward
                model_output = self.model(batch_x, input_mask=batch_masks, mask=mask).reconstruction
                model_output = torch.nn.functional.pad(model_output, (0, original.size(2)-model_output.size(2)), mode='replicate')

                output = model_output.reshape(original.size(0), n_channels, self.win_size)

                # Compute loss
                loss = self.criterion(output, original)
                    
                # print(f"loss: {loss.item()}")
                
                # Backward
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()

            # self.model.eval()
            # avg_loss = 0
            # with torch.no_grad():
            #     for batch_x, batch_masks in tqdm(valid_loader, total=len(valid_loader)):
            #         batch_x = batch_x.to("cuda").float()
            #         batch_masks = batch_masks.to("cuda")
            #         batch_x = batch_x.permute(0,2,1)

            #         print('batch_x: ', batch_x.shape)
            #         print('batch_masks: ', batch_masks.shape)

            #         output = self.model(batch_x, input_mask=batch_masks) 

            #         loss = self.criterion(output.reconstruction.reshape(-1, n_channels, self.win_size), batch_x)
            #         print(f"loss: {loss.item()}")
            #         avg_loss += loss.cpu().item()

            # valid_loss = avg_loss/max(len(valid_loader), 1)
            # self.scheduler.step()
            # self.early_stopping(valid_loss, self.model)
            # if self.early_stopping.early_stop:
            #     print("   Early stopping<<<")
            #     break
        
    def decision_function(self, data):
        """
        Not used, present for API consistency by convention.
        """

        test_loader = DataLoader(
            dataset=ReconstructDataset_Moment(data, window_size=self.win_size),
            batch_size=self.batch_size,
            shuffle=False)

        trues, preds = [], []
        self.score_list = []
        with torch.no_grad():
            for batch_x, batch_masks in tqdm(test_loader, total=len(test_loader)):
                batch_x = batch_x.to("cuda").float()
                batch_masks = batch_masks.to("cuda")
                batch_x = batch_x.permute(0,2,1)

                # print('batch_x: ', batch_x.shape)             # [batch_size, n_channels, window_size]
                # print('batch_masks: ', batch_masks.shape)     # [batch_size, window_size]

                output = self.model(batch_x, input_mask=batch_masks) 
                score = torch.mean(self.anomaly_criterion(batch_x, output.reconstruction), dim=-1).detach().cpu().numpy()[:, -1]
                self.score_list.append(score)

        self.__anomaly_score = np.concatenate(self.score_list, axis=0).reshape(-1)

        if self.__anomaly_score.shape[0] < len(data):
            self.__anomaly_score = np.array([self.__anomaly_score[0]]*math.ceil((self.win_size-1)/2) + 
                        list(self.__anomaly_score) + [self.__anomaly_score[-1]]*((self.win_size-1)//2))

        return self.__anomaly_score