File size: 10,044 Bytes
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
from typing import List, Optional, Union, Tuple
import torch
from transformers import T5EncoderModel, T5Tokenizer
import numpy as np
import cv2
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
from accelerate.logging import get_logger
import tempfile
import argparse
import yaml
import shutil

logger = get_logger(__name__)

def get_args():
    parser = argparse.ArgumentParser(description="Training script for CogVideoX using config file.")
    parser.add_argument(
        "--config", 
        type=str, 
        required=True, 
        help="Path to the YAML config file."
    )
    args = parser.parse_args()
    with open(args.config, "r") as f:
        config = yaml.safe_load(f)
    args = argparse.Namespace(**config)
    # Convert nested config dict to an argparse.Namespace for easier downstream usage
    return args



def atomic_save(save_path, accelerator):
    parent = os.path.dirname(save_path)
    tmp_dir = tempfile.mkdtemp(dir=parent)
    backup_dir = save_path + "_backup"

    try:
        # Save state into the temp directory
        accelerator.save_state(tmp_dir)

        # Backup existing save_path if it exists
        if os.path.exists(save_path):
            os.rename(save_path, backup_dir)

        # Atomically move temp directory into place
        os.rename(tmp_dir, save_path)

        # Clean up the backup directory
        if os.path.exists(backup_dir):
            shutil.rmtree(backup_dir)

    except Exception as e:
        # Clean up temp directory on failure
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)

        # Restore from backup if replacement failed
        if os.path.exists(backup_dir):
            if os.path.exists(save_path):
                shutil.rmtree(save_path)
            os.rename(backup_dir, save_path)

        raise e


def get_optimizer(args, params_to_optimize, use_deepspeed: bool = False):
    # Use DeepSpeed optimzer
    if use_deepspeed:
        from accelerate.utils import DummyOptim


        return DummyOptim(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            eps=args.adam_epsilon,
            weight_decay=args.adam_weight_decay,
        )

    # Optimizer creation
    supported_optimizers = ["adam", "adamw", "prodigy"]
    if args.optimizer not in supported_optimizers:
        logger.warning(
            f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include {supported_optimizers}. Defaulting to AdamW"
        )
        args.optimizer = "adamw"

    if args.use_8bit_adam and not (args.optimizer.lower() not in ["adam", "adamw"]):
        logger.warning(
            f"use_8bit_adam is ignored when optimizer is not set to 'Adam' or 'AdamW'. Optimizer was "
            f"set to {args.optimizer.lower()}"
        )

    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

    if args.optimizer.lower() == "adamw":
        optimizer_class = bnb.optim.AdamW8bit if args.use_8bit_adam else torch.optim.AdamW

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            eps=args.adam_epsilon,
            weight_decay=args.adam_weight_decay,
        )
    elif args.optimizer.lower() == "adam":
        optimizer_class = bnb.optim.Adam8bit if args.use_8bit_adam else torch.optim.Adam


        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            eps=args.adam_epsilon,
            weight_decay=args.adam_weight_decay,
        )
    elif args.optimizer.lower() == "prodigy":
        try:
            import prodigyopt
        except ImportError:
            raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")

        optimizer_class = prodigyopt.Prodigy

        if args.learning_rate <= 0.1:
            logger.warning(
                "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
            )

        optimizer = optimizer_class(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            beta3=args.prodigy_beta3,
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            decouple=args.prodigy_decouple,
            use_bias_correction=args.prodigy_use_bias_correction,
            safeguard_warmup=args.prodigy_safeguard_warmup,
        )

    return optimizer


def prepare_rotary_positional_embeddings(
    height: int,
    width: int,
    num_frames: int,
    vae_scale_factor_spatial: int = 8,
    patch_size: int = 2,
    attention_head_dim: int = 64,
    device: Optional[torch.device] = None,
    base_height: int = 480,
    base_width: int = 720,
) -> Tuple[torch.Tensor, torch.Tensor]:
    grid_height = height // (vae_scale_factor_spatial * patch_size)
    grid_width = width // (vae_scale_factor_spatial * patch_size)
    base_size_width = base_width // (vae_scale_factor_spatial * patch_size)
    base_size_height = base_height // (vae_scale_factor_spatial * patch_size)

    grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height)
    freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
        embed_dim=attention_head_dim,
        crops_coords=grid_crops_coords,
        grid_size=(grid_height, grid_width),
        temporal_size=num_frames,
    )

    freqs_cos = freqs_cos.to(device=device)
    freqs_sin = freqs_sin.to(device=device)
    return freqs_cos, freqs_sin


def _get_t5_prompt_embeds(
    tokenizer: T5Tokenizer,
    text_encoder: T5EncoderModel,
    prompt: Union[str, List[str]],
    num_videos_per_prompt: int = 1,
    max_sequence_length: int = 226,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    text_input_ids=None,
):
    prompt = [prompt] if isinstance(prompt, str) else prompt
    batch_size = len(prompt)

    if tokenizer is not None:
        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
    else:
        if text_input_ids is None:
            raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.")

    prompt_embeds = text_encoder(text_input_ids.to(device))[0]
    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

    # duplicate text embeddings for each generation per prompt, using mps friendly method
    _, seq_len, _ = prompt_embeds.shape
    prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)

    return prompt_embeds


def encode_prompt(
    tokenizer: T5Tokenizer,
    text_encoder: T5EncoderModel,
    prompt: Union[str, List[str]],
    num_videos_per_prompt: int = 1,
    max_sequence_length: int = 226,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    text_input_ids=None,
):
    prompt = [prompt] if isinstance(prompt, str) else prompt
    prompt_embeds = _get_t5_prompt_embeds(
        tokenizer,
        text_encoder,
        prompt=prompt,
        num_videos_per_prompt=num_videos_per_prompt,
        max_sequence_length=max_sequence_length,
        device=device,
        dtype=dtype,
        text_input_ids=text_input_ids,
    )
    return prompt_embeds


def compute_prompt_embeddings(
    tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False
):
    if requires_grad:
        prompt_embeds = encode_prompt(
            tokenizer,
            text_encoder,
            prompt,
            num_videos_per_prompt=1,
            max_sequence_length=max_sequence_length,
            device=device,
            dtype=dtype,
        )
    else:
        with torch.no_grad():
            prompt_embeds = encode_prompt(
                tokenizer,
                text_encoder,
                prompt,
                num_videos_per_prompt=1,
                max_sequence_length=max_sequence_length,
                device=device,
                dtype=dtype,
            )
    return prompt_embeds

def save_frames_as_pngs(video_array,output_dir, 
                        downsample_spatial=1,   # e.g. 2 to halve width & height
                        downsample_temporal=1): # e.g. 2 to keep every 2nd frame
    """
    Save each frame of a (T, H, W, C) numpy array as a PNG with no compression.
    """
    assert video_array.ndim == 4 and video_array.shape[-1] == 3, \
        "Expected (T, H, W, C=3) array"
    assert video_array.dtype == np.uint8, "Expected uint8 array"
    
    os.makedirs(output_dir, exist_ok=True)
    
    # temporal downsample
    frames = video_array[::downsample_temporal]
    
    # compute spatially downsampled size
    T, H, W, _ = frames.shape
    new_size = (W // downsample_spatial, H // downsample_spatial)
    
    # PNG compression param: 0 = no compression
    png_params = [cv2.IMWRITE_PNG_COMPRESSION, 0]
    
    for idx, frame in enumerate(frames):
        # frame is RGB; convert to BGR for OpenCV
        bgr = frame[..., ::-1]
        if downsample_spatial > 1:
            bgr = cv2.resize(bgr, new_size, interpolation=cv2.INTER_NEAREST)
        
        filename = os.path.join(output_dir, "frame_{:05d}.png".format(idx))
        success = cv2.imwrite(filename, bgr, png_params)
        if not success:
            raise RuntimeError("Failed to write frame ")