File size: 30,609 Bytes
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import io
import os
import glob
from pathlib import Path
import pickle
import random
import time


import cv2
import torch
import numpy as np
import pandas as pd
import torchvision.transforms as transforms
from PIL import Image, ImageOps, ImageCms
from decord import VideoReader
from torch.utils.data.dataset import Dataset
from controlnet_aux import CannyDetector, HEDdetector
import torch.nn.functional as F
from helpers import generate_1x_sequence, generate_2x_sequence, generate_large_blur_sequence, generate_test_case


def unpack_mm_params(p):
    if isinstance(p, (tuple, list)):
        return p[0], p[1]
    elif isinstance(p, (int, float)):
        return p, p
    raise Exception(f'Unknown input parameter type.\nParameter: {p}.\nType: {type(p)}')


def resize_for_crop(image, min_h, min_w):
    img_h, img_w = image.shape[-2:]
    
    if img_h >= min_h and img_w >= min_w:
        coef = min(min_h / img_h, min_w / img_w)
    elif img_h <= min_h and img_w <=min_w:
        coef = max(min_h / img_h, min_w / img_w)
    else:
        coef = min_h / img_h if min_h > img_h else min_w / img_w 

    out_h, out_w = int(img_h * coef), int(img_w * coef)
    resized_image = transforms.functional.resize(image, (out_h, out_w), antialias=True)
    return resized_image



class BaseClass(Dataset):
    def __init__(
            self, 
            data_dir,
            output_dir,
            image_size=(320, 512), 
            hflip_p=0.5,
            controlnet_type='canny',
            split='train',
            *args,
            **kwargs
        ):
        self.split = split
        self.height, self.width = unpack_mm_params(image_size)
        self.data_dir = data_dir
        self.output_dir = output_dir
        self.hflip_p = hflip_p
        self.image_size = image_size
        self.length = 0
        
    def __len__(self):
        return self.length
        

    def load_frames(self, frames):
        # frames: numpy array of shape (N, H, W, C), 0–255
        # → tensor of shape (N, C, H, W) as float
        pixel_values = torch.from_numpy(frames).permute(0, 3, 1, 2).contiguous().float()
        # normalize to [-1, 1]
        pixel_values = pixel_values / 127.5 - 1.0
        # resize to (self.height, self.width)
        pixel_values = F.interpolate(
            pixel_values,
            size=(self.height, self.width),
            mode="bilinear",
            align_corners=False
        )
        return pixel_values
        
    def get_batch(self, idx):
        raise Exception('Get batch method is not realized.')

    def __getitem__(self, idx):
        while True:
            try:
                video, caption, motion_blur = self.get_batch(idx)
                break
            except Exception as e:
                print(e)
                idx = random.randint(0, self.length - 1)
            
        video, = [
            resize_for_crop(x, self.height, self.width) for x in [video]
        ] 
        video, = [
            transforms.functional.center_crop(x, (self.height, self.width)) for x in [video]
        ]
        data = {
            'video': video, 
            'caption': caption, 
        }
        return data

def load_as_srgb(path):
    img = Image.open(path)
    img = ImageOps.exif_transpose(img)

    if 'icc_profile' in img.info:
        icc = img.info['icc_profile']
        src_profile = ImageCms.ImageCmsProfile(io.BytesIO(icc))
        dst_profile = ImageCms.createProfile("sRGB")
        img = ImageCms.profileToProfile(img, src_profile, dst_profile, outputMode='RGB')
    else:
        img = img.convert("RGB")  # Assume sRGB
    return img

class GoProMotionBlurDataset(BaseClass): #7 frame go pro dataset
    def __init__(self,
                 *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Set blur and sharp directories based on split
        if self.split == 'train':
            self.blur_root = os.path.join(self.data_dir, 'train', 'blur')
            self.sharp_root = os.path.join(self.data_dir, 'train', 'sharp')
        elif self.split in ['val', 'test']:
            self.blur_root = os.path.join(self.data_dir, 'test', 'blur')
            self.sharp_root = os.path.join(self.data_dir, 'test', 'sharp')
        else:
            raise ValueError(f"Unsupported split: {self.split}")

        # Collect all blurred image paths
        pattern = os.path.join(self.blur_root, '*', '*.png')

        self.blur_paths = sorted(glob.glob(pattern))

        if self.split == 'val':
            # Optional: limit validation subset
            self.blur_paths = self.blur_paths[:5]

        filtered_blur_paths = []
        for path in self.blur_paths:
            output_deblurred_dir = os.path.join(self.output_dir, "deblurred")
            full_output_path = Path(output_deblurred_dir, *path.split('/')[-2:]).with_suffix(".mp4")
            if not os.path.exists(full_output_path):
                filtered_blur_paths.append(path)

        # Window and padding parameters
        self.window_size = 7              # original number of sharp frames
        self.pad = 2                      # number of times to repeat last frame
        self.output_length = self.window_size + self.pad
        self.half_window = self.window_size // 2
        self.length = len(self.blur_paths)

        # Normalized input interval: always [-0.5, 0.5]
        self.input_interval = torch.tensor([[-0.5, 0.5]], dtype=torch.float)

        # Precompute normalized output intervals: first for window_size frames, then pad duplicates
        step = 1.0 / (self.window_size - 1)
        # intervals for the original 7 frames
        window_intervals = []
        for i in range(self.window_size):
            start = -0.5 + i * step
            if i < self.window_size - 1:
                end = -0.5 + (i + 1) * step
            else:
                end = 0.5
            window_intervals.append([start, end])
        # append the last interval pad times
        intervals = window_intervals + [window_intervals[-1]] * self.pad
        self.output_interval = torch.tensor(intervals, dtype=torch.float)

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        # Path to the blurred (center) frame
        blur_path = self.blur_paths[idx]
        seq_name = os.path.basename(os.path.dirname(blur_path))
        frame_name = os.path.basename(blur_path)
        center_idx = int(os.path.splitext(frame_name)[0])

        # Compute sharp frame range [center-half, center+half]
        start_idx = center_idx - self.half_window
        end_idx = center_idx + self.half_window

        # Load sharp frames
        sharp_dir = os.path.join(self.sharp_root, seq_name)
        frames = []
        for i in range(start_idx, end_idx + 1):
            sharp_filename = f"{i:06d}.png"
            sharp_path = os.path.join(sharp_dir, sharp_filename)
            img = Image.open(sharp_path).convert('RGB')
            frames.append(img)

        # Repeat last sharp frame so total frames == output_length
        while len(frames) < self.output_length:
            frames.append(frames[-1])

        # Load blurred image
        blur_img = Image.open(blur_path).convert('RGB')

        # Convert to pixel values via BaseClass loader
        video = self.load_frames(np.array(frames))                    # shape: (output_length, H, W, C)
        blur_input = self.load_frames(np.expand_dims(np.array(blur_img), 0))  # shape: (1, H, W, C)
        end_time = time.time()
        data = {
            'file_name': os.path.join(seq_name, frame_name),
            'blur_img': blur_input,
            'video': video,
            "caption": "",
            'motion_blur_amount': torch.tensor(self.half_window, dtype=torch.long),
            'input_interval': self.input_interval,
            'output_interval': self.output_interval,
            "num_frames": self.window_size,
            "mode": "1x",
        }
        return data

        
class OutsidePhotosDataset(BaseClass):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.image_paths = sorted(glob.glob(os.path.join(self.data_dir, '**', '*.*'), recursive=True))

        INTERVALS = [
                    {"in_start": 0, "in_end": 16, "out_start": 0, "out_end": 16, "center": 8, "window_size": 16, "mode": "1x", "fps": 240},
                    {"in_start": 4, "in_end": 12, "out_start": 0, "out_end": 16, "center": 8, "window_size": 16, "mode": "2x", "fps": 240},]
        #other modes commented out for faster processing
        #{"in_start": 0, "in_end": 4, "out_start": 0, "out_end": 4, "center": 2, "window_size": 4, "mode": "1x", "fps": 240},
        #{"in_start": 0, "in_end": 8, "out_start": 0, "out_end": 8, "center": 4, "window_size": 8, "mode": "1x", "fps": 240},
        #{"in_start": 0, "in_end": 12, "out_start": 0, "out_end": 12, "center": 6, "window_size": 12, "mode": "1x", "fps": 240},
        #{"in_start": 0, "in_end": 32, "out_start": 0, "out_end": 32, "center": 12, "window_size": 32, "mode": "lb", "fps": 120} 
        #{"in_start": 0, "in_end": 48, "out_start": 0, "out_end": 48, "center": 24, "window_size": 48, "mode": "lb", "fps": 80}
                    

        self.cleaned_intervals = []
        for image_path in self.image_paths:
            for interval in INTERVALS:
                #create a copy of the interval dictionary
                i = interval.copy()
                #add the image path to the interval dictionary
                i['video_name'] = image_path 
                video_name = i['video_name']
                mode      = i['mode']
  
                vid_name_w_extension = os.path.relpath(video_name, self.data_dir).split('.')[0]  # "frame_00000"
                output_name = (
                    f"{vid_name_w_extension}_{mode}.mp4"
                )

                full_output_path = os.path.join("/datasets/sai/gencam/cogvideox/training/cogvideox-outsidephotos/deblurred", output_name) #THIS IS A HACK - YOU NEED TO UPDATE THIS TO YOUR OUTPUT DIRECTORY

                # Keep only if output doesn't exist
                if not os.path.exists(full_output_path):
                    self.cleaned_intervals.append(i)


        self.length = len(self.cleaned_intervals)

    def __len__(self):
        return self.length
    
    def __getitem__(self, idx):

        interval = self.cleaned_intervals[idx]

        in_start  = interval['in_start']
        in_end    = interval['in_end']
        out_start = interval['out_start']
        out_end   = interval['out_end']
        center = interval['center']
        window = interval['window_size']
        mode   = interval['mode']
        fps    = interval['fps']


        image_path = interval['video_name']
        blur_img_original = load_as_srgb(image_path)
        H,W = blur_img_original.size

        frame_paths = []
        frame_paths = ["../assets/dummy_image.png" for _ in range(window)] #any random path replicated

        # generate test case
        _, seq_frames, inp_int, out_int, high_fps_video, num_frames = generate_test_case(
            frame_paths=frame_paths, window_max=window, in_start=in_start, in_end=in_end, out_start=out_start,out_end=out_end, center=center, mode=mode, fps=fps
        )
        file_name = image_path

        # Get base directory and frame prefix
        relative_file_name = os.path.relpath(file_name, self.data_dir)
        base_dir = os.path.dirname(relative_file_name)
        frame_stem = os.path.splitext(os.path.basename(file_name))[0]  # "frame_00000"
        # Build new filename
        new_filename = (
            f"{frame_stem}_{mode}.png"
        )

        blur_img =blur_img_original.resize((self.image_size[1], self.image_size[0])) #cause pil is width, height

        # Final path
        relative_file_name = os.path.join(base_dir, new_filename)


        blur_input = self.load_frames(np.expand_dims(blur_img, 0).copy())
        # seq_frames is list of frames; stack along time dim
        video = self.load_frames(np.stack(seq_frames, axis=0))


        data = {
            'file_name': relative_file_name,
            "original_size": (H, W),
            'blur_img': blur_input,
            'video': video,
            'caption': "",
            'input_interval': inp_int,
            'output_interval': out_int,
            "num_frames": num_frames,
        }
        return data
    
class FullMotionBlurDataset(BaseClass):
    """
    A dataset that randomly selects among 1×, 2×, or large-blur modes per sample.
    Uses category-specific <split>_list.txt files under each subfolder of FullDataset to assemble sequences.
    In 'test' split, it instead loads precomputed intervals from intervals_test.pkl and uses generate_test_case.
    """
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.seq_dirs = []

        # TEST split: load fixed intervals early
        if self.split == 'test':
            pkl_path = os.path.join(self.data_dir, 'intervals_test.pkl')
            with open(pkl_path, 'rb') as f:
                self.test_intervals = pickle.load(f)
            assert self.test_intervals, f"No test intervals found in {pkl_path}"
            
            cleaned_intervals = []
            for interval in self.test_intervals:
                # Extract interval values
                in_start  = interval['in_start']
                in_end    = interval['in_end']
                out_start = interval['out_start']
                out_end   = interval['out_end']
                center    = interval['center']
                window    = interval['window_size']
                mode      = interval['mode']
                fps       = interval['fps'] # e.g. "lower_fps_frames/720p_240fps_1/frame_00247.png"
                category, seq = interval['video_name'].split('/')#.split('/')
                seq_dir = os.path.join(self.data_dir, category, 'lower_fps_frames', seq)
                frame_paths = sorted(glob.glob(os.path.join(seq_dir, '*.png')))
                rel_path = os.path.relpath(frame_paths[center], self.data_dir)
                rel_path = os.path.splitext(rel_path)[0] # remove the file extension

                output_name = (
                    f"{rel_path}_"
                    f"in{in_start:04d}_ie{in_end:04d}_"
                    f"os{out_start:04d}_oe{out_end:04d}_"
                    f"ctr{center:04d}_win{window:04d}_"
                    f"fps{fps:04d}_{mode}.mp4"
                )
                output_deblurred_dir = os.path.join(self.output_dir, "deblurred")
                full_output_path = os.path.join(output_deblurred_dir, output_name) 

                # Keep only if output doesn't exist
                if not os.path.exists(full_output_path):
                    cleaned_intervals.append(interval)
            print("Len of test intervals after cleaning: ", len(cleaned_intervals))
            print("Len of test intervals before cleaning: ", len(self.test_intervals))
            self.test_intervals = cleaned_intervals


        # TRAIN/VAL: build seq_dirs from each category's list or fallback
        list_file = 'train_list.txt' if self.split == 'train' else 'test_list.txt'
        for category in sorted(os.listdir(self.data_dir)):
            cat_dir = os.path.join(self.data_dir, category)
            if not os.path.isdir(cat_dir):
                continue
            list_path = os.path.join(cat_dir, list_file)
            if os.path.isfile(list_path):
                with open(list_path, 'r') as f:
                    for line in f:
                        rel = line.strip()
                        if not rel:
                            continue
                        seq_dir = os.path.join(self.data_dir, rel)
                        if os.path.isdir(seq_dir):
                            self.seq_dirs.append(seq_dir)
            else:
                fps_root = os.path.join(cat_dir, 'lower_fps_frames')
                if os.path.isdir(fps_root):
                    for seq in sorted(os.listdir(fps_root)):
                        seq_path = os.path.join(fps_root, seq)
                        if os.path.isdir(seq_path):
                            self.seq_dirs.append(seq_path)

        if self.split == 'val':
            self.seq_dirs = self.seq_dirs[:5]
        if self.split == 'train':
            self.seq_dirs *= 10

        assert self.seq_dirs, \
            f"No sequences found for split '{self.split}' in {self.data_dir}"

    def __len__(self):
        return len(self.test_intervals) if self.split == 'test' else len(self.seq_dirs)

    def __getitem__(self, idx):
        # Prepare base items
        if self.split == 'test':
            interval = self.test_intervals[idx]
            category, seq = interval['video_name'].split('/')
            seq_dir = os.path.join(self.data_dir, category, 'lower_fps_frames', seq)
            frame_paths = sorted(glob.glob(os.path.join(seq_dir, '*.png')))

            in_start  = interval['in_start']
            in_end    = interval['in_end']
            out_start = interval['out_start']
            out_end   = interval['out_end']
            center = interval['center']
            window = interval['window_size']
            mode   = interval['mode']
            fps    = interval['fps']

            # generate test case
            blur_img, seq_frames, inp_int, out_int, high_fps_video, num_frames = generate_test_case(
                frame_paths=frame_paths, window_max=window, in_start=in_start, in_end=in_end, out_start=out_start,out_end=out_end, center=center, mode=mode, fps=fps
            )
            file_name = frame_paths[center]
            
        else:
            seq_dir = self.seq_dirs[idx]
            frame_paths = sorted(glob.glob(os.path.join(seq_dir, '*.png')))
            mode = random.choice(['1x', '2x', 'large_blur'])

            if mode == '1x' or len(frame_paths) < 50:
                base_rate = random.choice([1, 2])
                blur_img, seq_frames, inp_int, out_int, _ = generate_1x_sequence(
                    frame_paths, window_max=16, output_len=17, base_rate=base_rate
                )
            elif mode == '2x':
                base_rate = random.choice([1, 2])
                blur_img, seq_frames, inp_int, out_int, _ = generate_2x_sequence(
                    frame_paths, window_max=16, output_len=17, base_rate=base_rate
                )
            else:
                max_base = min((len(frame_paths) - 1) // 17, 3)
                base_rate = random.randint(1, max_base)
                blur_img, seq_frames, inp_int, out_int, _ = generate_large_blur_sequence(
                    frame_paths, window_max=16, output_len=17, base_rate=base_rate
                )
            file_name = frame_paths[0]
            num_frames = 16

        # blur_img is a single frame; wrap in batch dim
        blur_input = self.load_frames(np.expand_dims(blur_img, 0))
        # seq_frames is list of frames; stack along time dim
        video = self.load_frames(np.stack(seq_frames, axis=0))

        
        relative_file_name = os.path.relpath(file_name, self.data_dir)
        
        if self.split == 'test':
            # Get base directory and frame prefix
            base_dir = os.path.dirname(relative_file_name)
            frame_stem = os.path.splitext(os.path.basename(relative_file_name))[0]  # "frame_00000"

            # Build new filename
            new_filename = (
                f"{frame_stem}_"
                f"in{in_start:04d}_ie{in_end:04d}_"
                f"os{out_start:04d}_oe{out_end:04d}_"
                f"ctr{center:04d}_win{window:04d}_"
                f"fps{fps:04d}_{mode}.png"
            )

            # Final path
            relative_file_name = os.path.join(base_dir, new_filename)
        
        data = {
            'file_name': relative_file_name,
            'blur_img':  blur_input,
            'num_frames': num_frames,
            'video':     video,
            'caption':   "",
            'mode':      mode,
            'input_interval':  inp_int,
            'output_interval': out_int,
        }
        if self.split == 'test':
            high_fps_video = self.load_frames(np.stack(high_fps_video, axis=0))
            data['high_fps_video'] = high_fps_video
        return data

class GoPro2xMotionBlurDataset(BaseClass):
    def __init__(self,
                 *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Set blur and sharp directories based on split
        if self.split == 'train':
            self.blur_root = os.path.join(self.data_dir, 'train', 'blur')
            self.sharp_root = os.path.join(self.data_dir, 'train', 'sharp')
        elif self.split in ['val', 'test']:
            self.blur_root = os.path.join(self.data_dir, 'test', 'blur')
            self.sharp_root = os.path.join(self.data_dir, 'test', 'sharp')
        else:
            raise ValueError(f"Unsupported split: {self.split}")

        # Collect all blurred image paths
        pattern = os.path.join(self.blur_root, '*', '*.png')

        def get_sharp_paths(blur_paths):
            sharp_paths = []
            for blur_path in blur_paths:
                base_dir = blur_path.replace('/blur/', '/sharp/')
                frame_num = int(os.path.basename(blur_path).split('.')[0])
                dir_path = os.path.dirname(base_dir)
                sequence = [
                    os.path.join(dir_path, f"{frame_num + offset:06d}.png")
                    for offset in range(-6, 7)
                ]
                if all(os.path.exists(path) for path in sequence):
                    sharp_paths.append(sequence)
            return sharp_paths




        self.blur_paths = sorted(glob.glob(pattern))
        filtered_blur_paths = []
        for path in self.blur_paths:
            output_deblurred_dir = os.path.join(self.output_dir, "deblurred")
            full_output_path = Path(output_deblurred_dir, *path.split('/')[-2:]).with_suffix(".mp4")
            if not os.path.exists(full_output_path):
                filtered_blur_paths.append(path)
        self.blur_paths = filtered_blur_paths

        self.sharp_paths = get_sharp_paths(self.blur_paths)
        if self.split == 'val':
            # Optional: limit validation subset
            self.sharp_paths = self.sharp_paths[:5]
        self.length = len(self.sharp_paths)

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        # Path to the blurred (center) frame
        sharp_path = self.sharp_paths[idx]


        # Load sharp frames
        blur_img, seq_frames, inp_int, out_int, high_fps_video, num_frames = generate_test_case(
                        frame_paths=sharp_path, window_max=13, in_start=3, in_end=10, out_start=0,out_end=13, center=6, mode="2x", fps=240
                    )
        
        # Convert to pixel values via BaseClass loader
        video = self.load_frames(np.array(seq_frames))                    # shape: (output_length, H, W, C)
        blur_input = self.load_frames(np.expand_dims(np.array(blur_img), 0))  # shape: (1, H, W, C)
        last_two_parts_of_path = os.path.join(*sharp_path[6].split(os.sep)[-2:])
        #print(f"Time taken to load and process data: {end_time - start_time:.2f} seconds")
        data = {
            'file_name': last_two_parts_of_path,
            'blur_img': blur_input,
            'video': video,
            "caption": "",
            'input_interval': inp_int,
            'output_interval': out_int,
            "num_frames": num_frames,
            "mode": "2x",
        }
        return data
    
class BAISTDataset(BaseClass):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

      
        test_folders =  {
            "gWA_sBM_c01_d26_mWA0_ch06_cropped_32X": None,
            "gBR_sBM_c01_d05_mBR0_ch01_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch04_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch05_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch08_cropped_32X": None,
            "gWA_sBM_c01_d26_mWA0_ch02_cropped_32X": None,
            "gJS_sBM_c01_d02_mJS0_ch08_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch07_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch06_cropped_32X": None,
            "gBR_sBM_c01_d05_mBR0_ch03_cropped_32X": None,
            "gBR_sBM_c01_d05_mBR0_ch05_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch02_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch03_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch09_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch10_cropped_32X": None,
            "gWA_sBM_c01_d26_mWA0_ch10_cropped_32X": None,
            "gBR_sBM_c01_d05_mBR0_ch06_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch08_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch06_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch10_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch09_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch02_cropped_32X": None,
            "gBR_sBM_c01_d05_mBR0_ch04_cropped_32X": None,
            "gPO_sBM_c01_d10_mPO0_ch09_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch01_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch07_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch03_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch04_cropped_32X": None,
            "gBR_sBM_c01_d05_mBR0_ch02_cropped_32X": None,
            "gHO_sBM_c01_d20_mHO0_ch01_cropped_32X": None,
            "gMH_sBM_c01_d22_mMH0_ch05_cropped_32X": None,
            "gPO_sBM_c01_d10_mPO0_ch10_cropped_32X": None,
        }

        def collect_blur_images(root_dir, allowed_folders, skip_start=40, skip_end=40):
            blur_image_paths = []

            for dirpath, dirnames, filenames in os.walk(root_dir):
                if os.path.basename(dirpath) == "blur":
                    parent_folder = os.path.basename(os.path.dirname(dirpath))
                    if (self.split in ["test", "val"] and parent_folder in test_folders) or (self.split in "train" and parent_folder not in test_folders):
                        # Filter and sort valid image filenames
                        valid_files = [
                            f for f in filenames
                            if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff')) and os.path.splitext(f)[0].isdigit()
                        ]
                        valid_files.sort(key=lambda x: int(os.path.splitext(x)[0]))

                        # Skip first and last N files
                        middle_files = valid_files[skip_start:len(valid_files) - skip_end]

                        for f in middle_files:
                            from pathlib import Path
                            full_path = Path(os.path.join(dirpath, f))
                            output_deblurred_dir = os.path.join(self.output_dir, "deblurred")
                            full_output_path = Path(output_deblurred_dir, *full_path.parts[-3:]).with_suffix(".mp4")
                            if not os.path.exists(full_output_path) or self.split in ["train", "val"]:
                                blur_image_paths.append(os.path.join(dirpath, f))

            return blur_image_paths

    

        self.image_paths = collect_blur_images(self.data_dir, test_folders)
        #if bbx path does not exist, remove the image path
        self.image_paths = [path for path in self.image_paths if os.path.exists(path.replace("blur", "blur_anno").replace(".png", ".pkl"))]

        filtered_image_paths = []
        for blur_path in self.image_paths:
            base_dir = blur_path.replace('/blur/', '/sharp/').replace('.png', '')
            sharp_paths = [f"{base_dir}_{i:03d}.png" for i in range(7)]
            if all(os.path.exists(p) for p in sharp_paths):
                filtered_image_paths.append(blur_path)

        self.image_paths = filtered_image_paths
                
        if self.split == 'val':
            # Optional: limit validation subset
            self.image_paths = self.image_paths[:4]
        self.length = len(self.image_paths)

    def __len__(self):
        return self.length
    
    
    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        blur_img_original = load_as_srgb(image_path)

        bbx_path = image_path.replace("blur", "blur_anno").replace(".png", ".pkl")
        
        #load the bbx path
        bbx = np.load(bbx_path, allow_pickle=True)['bbox'][0:4]
        # Final crop box
        #turn crop_box into tupel
        W,H = blur_img_original.size
        blur_img = blur_img_original.resize((self.image_size[1], self.image_size[0]), resample=Image.BILINEAR)

        #cause pil is width, height
        blur_np = np.array([blur_img])

        base_dir = os.path.dirname(os.path.dirname(image_path))  # strip /blur
        filename = os.path.splitext(os.path.basename(image_path))[0]  # '00000000'
        sharp_dir = os.path.join(base_dir, "sharp")

        frame_paths = [
            os.path.join(sharp_dir, f"{filename}_{i:03d}.png")
            for i in range(7)
        ]

        _, seq_frames, inp_int, out_int, high_fps_video, num_frames = generate_test_case(
                        frame_paths=frame_paths, window_max=7, in_start=0, in_end=7, out_start=0,out_end=7, center=3, mode="1x", fps=240
                    )
    
        pixel_values = self.load_frames(np.stack(seq_frames, axis=0))
        blur_pixel_values = self.load_frames(blur_np)

        relative_file_name = os.path.relpath(image_path, self.data_dir)

        out_bbx = bbx.copy()

        scale_x = blur_pixel_values.shape[3]/W
        scale_y = blur_pixel_values.shape[2]/H
        #scale the bbx
        out_bbx[0] = int(out_bbx[0] * scale_x)
        out_bbx[1] = int(out_bbx[1] * scale_y)
        out_bbx[2] = int(out_bbx[2] * scale_x)
        out_bbx[3] = int(out_bbx[3] * scale_y)

        out_bbx = torch.tensor(out_bbx, dtype=torch.uint32)

        #crop image using the bbx
        blur_img_npy = np.array(blur_img)
        out_bbx_npy = out_bbx.numpy().astype(np.uint32)
        blur_img_npy = blur_img_npy[out_bbx_npy[1]:out_bbx_npy[3], out_bbx_npy[0]:out_bbx_npy[2], :]

        data = {
            'file_name': relative_file_name,
            'blur_img': blur_pixel_values,
            'video': pixel_values,
            'bbx': out_bbx,
            'caption': "",
            'input_interval': inp_int,
            'output_interval': out_int,
            "num_frames": num_frames,
            'mode':  "1x",
        }
        return data