Spaces:
Runtime error
Runtime error
| # Generates positive movie reviews by tuning a pretrained model on IMDB dataset | |
| # with a sentiment reward function | |
| import json | |
| import os | |
| import sys | |
| from typing import List | |
| from datasets import load_dataset | |
| from transformers import DistilBertForSequenceClassification, pipeline | |
| import trlx | |
| from trlx.data.default_configs import ( | |
| TRLConfig, | |
| default_nemo_1_3b_config, | |
| default_nemo_2b_config, | |
| default_nemo_20b_config, | |
| default_ppo_config, | |
| ) | |
| def get_positive_score(scores): | |
| "Extract value associated with a positive sentiment from pipeline's output" | |
| return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] | |
| def main(hparams={}): | |
| # Merge sweep config with default config if given | |
| default_config = TRLConfig.update(default_ppo_config().to_dict(), hparams) | |
| cfg_name = os.environ.get("NEMO_CONFIG", "1.3B") | |
| if cfg_name == "1.3B": | |
| nemo_config = default_nemo_1_3b_config() | |
| elif cfg_name == "2B": | |
| nemo_config = default_nemo_2b_config() | |
| elif cfg_name == "20B": | |
| nemo_config = default_nemo_20b_config() | |
| else: | |
| raise ValueError(f"Unknown NEMO_CONFIG: {cfg_name}") | |
| config = default_config.evolve( | |
| train=dict( | |
| total_steps=512, | |
| seq_length=2048, | |
| batch_size=32, | |
| epochs=100, | |
| eval_interval=64, | |
| trainer="NeMoPPOTrainer", | |
| trainer_kwargs=dict( | |
| pretrained_model=f"/mnt/hdd/nemo-megatron-gpt-{cfg_name}/", | |
| megatron_cfg=nemo_config, | |
| ), | |
| checkpoint_interval=256, | |
| checkpoint_dir=f"nemo_{cfg_name}_ppo_sentiments", | |
| seed=2023, | |
| project_name="trlxnemo", | |
| tags=["nemo", "ppo", "sentiments", cfg_name], | |
| ), | |
| optimizer=dict( | |
| name="distributed_fused_adam", | |
| kwargs=dict( | |
| lr=6.001e-5, | |
| weight_decay=1e-06, | |
| eps=1.0e-8, | |
| betas=(0.9, 0.95), | |
| ), | |
| ), | |
| scheduler=dict( | |
| name="CosineAnnealing", | |
| ), | |
| model=dict(num_layers_unfrozen=2), | |
| method=dict( | |
| num_rollouts=128, | |
| init_kl_coef=0.05, | |
| scale_reward="ref", | |
| vf_coef=1, | |
| gen_kwargs=dict(temperature=1.0, max_new_tokens=40), | |
| chunk_size=128, | |
| ppo_epochs=4, | |
| ), | |
| ) | |
| config.scheduler.kwargs = dict(warmup_steps=0, constant_steps=1e12, min_lr=6.0e-5) | |
| rank = int(os.environ["SLURM_PROCID"]) | |
| local_rank = rank % 8 | |
| reward_model = DistilBertForSequenceClassification.from_pretrained("lvwerra/distilbert-imdb") | |
| reward_model.to(local_rank) | |
| sentiment_fn = pipeline( | |
| "sentiment-analysis", | |
| model=reward_model, # "lvwerra/distilbert-imdb", | |
| tokenizer="lvwerra/distilbert-imdb", | |
| top_k=2, | |
| truncation=True, | |
| batch_size=256, | |
| device=local_rank, | |
| ) | |
| def reward_fn(samples: List[str], **kwargs) -> List[float]: | |
| reward_model.to(local_rank) | |
| sentiments = list(map(get_positive_score, sentiment_fn(samples))) | |
| reward_model.to("cpu") | |
| return sentiments | |
| # Take few words off of movies reviews as prompts | |
| imdb = load_dataset("imdb", split="train+test") | |
| prompts = [" ".join(review.split()[:4]) for review in imdb["text"]] | |
| trlx.train( | |
| reward_fn=reward_fn, | |
| prompts=prompts, | |
| eval_prompts=["I don't know much about Hungarian underground"] * 256, | |
| config=config, | |
| ) | |
| if __name__ == "__main__": | |
| hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) | |
| main(hparams) | |