Spaces:
Runtime error
Runtime error
| import os.path | |
| import sys | |
| from glob import glob | |
| from omegaconf.omegaconf import OmegaConf | |
| from trlx.data.default_configs import default_ppo_config | |
| from trlx.trainer.nemo_ppo_trainer import PPOGPT, megatron_trainer | |
| default_config = default_ppo_config() | |
| trl_config = default_config.evolve( | |
| train=dict( | |
| default_config.train.__dict__, | |
| trainer="NeMoPPOTrainer", | |
| trainer_kwargs=dict( | |
| pretrained_model=None, | |
| megatron_cfg="megatron_20b.yaml", | |
| ), | |
| ), | |
| ) | |
| def find_checkpoints(checkpoint_dir): | |
| checkpoints = glob(os.path.join(checkpoint_dir, "*", "*.ckpt")) | |
| names = [os.path.basename(c) for c in checkpoints] | |
| return set(names) | |
| def main(megatron_cfg_path, checkpoint_path): | |
| ppo_config = trl_config.method | |
| megatron_cfg = OmegaConf.load(megatron_cfg_path) | |
| megatron_cfg.trainer.num_nodes = 1 | |
| megatron_cfg.trainer.devices = ( | |
| megatron_cfg.model.tensor_model_parallel_size * megatron_cfg.model.pipeline_model_parallel_size | |
| ) | |
| # Overriden in generate | |
| megatron_cfg.model.global_batch_size = megatron_cfg.model.micro_batch_size | |
| megatron_cfg.model.resume_from_checkpoint = checkpoint_path | |
| megatron_cfg.exp_manager.create_wandb_logger = False | |
| megatron_cfg.exp_manager.create_checkpoint_callback = False | |
| trainer = megatron_trainer(megatron_cfg) | |
| if trainer.world_size != megatron_cfg.trainer.devices: | |
| raise ValueError("Inference only supports data parallel world size of 1") | |
| # Initialize PyTorch Lightning DDP | |
| def dummy(): | |
| return | |
| if trainer.strategy.launcher is not None: | |
| trainer.strategy.launcher.launch(dummy, trainer=trainer) | |
| trainer.strategy.setup_environment() | |
| model = PPOGPT(ppo_config=ppo_config, cfg=megatron_cfg.model, trainer=trainer, build_reference_model=False) | |
| model.load_from_pretrained(checkpoint_path) | |
| test = ["I don't know much about Hungarian underground"] | |
| test = [model.tokenizer.tokenizer.bos_token + t for t in test] | |
| print(model.generate(test, dict(max_length=40, min_length=0))["sentences"]) | |
| if __name__ == "__main__": | |
| main(sys.argv[1], sys.argv[2]) | |