Spaces:
Sleeping
Sleeping
File size: 11,413 Bytes
e221c83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
#newtrain.py
import os
import pandas as pd
import json
import re
import torch
import numpy as np
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments
)
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix
from sklearn.model_selection import train_test_split # ๋ฐ์ดํฐ ๋ถ๋ฆฌ
from sklearn.utils import class_weight
from torch.nn import CrossEntropyLoss
from typing import Dict, List, Tuple
from dataclasses import dataclass
import platform
import matplotlib.pyplot as plt
import seaborn as sns
# --- Matplotlib ํ๊ธ ํฐํธ ์ค์ (๋ก์ปฌ PC์ฉ) ---
try:
if platform.system() == 'Windows':
plt.rc('font', family='Malgun Gothic')
elif platform.system() == 'Darwin': # Mac OS
plt.rc('font', family='AppleGothic')
else: # Linux (์ฝ๋ฉ ๋ฑ)
plt.rc('font', family='NanumBarunGothic')
plt.rcParams['axes.unicode_minus'] = False
except:
print("ํ๊ธ ํฐํธ ์ค์ ์ ์คํจํ์ต๋๋ค. ํผ๋ ํ๋ ฌ์ ๋ผ๋ฒจ์ด ๊นจ์ง ์ ์์ต๋๋ค.")
# --- 1. ์ค์ ๋ถ ---
@dataclass
class TrainingConfig:
mode: str = "emotion"
data_dir: str = "./data"
output_dir: str = "./results"
base_model_name: str = "klue/roberta-base"
eval_batch_size: int = 64
num_train_epochs: int = 10
learning_rate: float = 1e-5
train_batch_size: int = 16
weight_decay: float = 0.01
max_length: int = 128
warmup_ratio: float = 0.1
def get_model_name(self) -> str:
return self.base_model_name
def get_output_dir(self) -> str:
# v2 ๋ชจ๋ธ ์ ์ฅ ๊ฒฝ๋ก
return os.path.join(self.output_dir, 'emotion_model_v2_manual')
# --- 2. ์ปค์คํ
ํด๋์ค ๋ฐ ํจ์ ---
class EmotionDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: val[idx].clone().detach() for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
class CustomTrainer(Trainer):
def __init__(self, *args, class_weights=None, **kwargs):
super().__init__(*args, **kwargs)
if class_weights is not None:
self.loss_fct = CrossEntropyLoss(weight=class_weights)
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
labels = inputs.pop("labels")
outputs = model(**inputs)
logits = outputs.get("logits")
loss = self.loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
return (loss, outputs) if return_outputs else loss
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
acc = accuracy_score(labels, preds)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted', zero_division=0)
return {'accuracy': acc, 'f1': f1}
def clean_text(text: str) -> str:
return re.sub(r'[^๊ฐ-ํฃa-zA-Z0-9 ]', '', str(text))
# --- 3. ๋ฐ์ดํฐ ๋ก๋ ([๋ณ๊ฒฝ] Train/Val/Test ๋ถ๋ฆฌ) ---
def get_data(config: TrainingConfig) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
if config.mode == 'nsmc':
raise ValueError("์ด ์คํฌ๋ฆฝํธ๋ 'emotion' ๋ชจ๋ ์ ์ฉ์
๋๋ค.")
elif config.mode == 'emotion':
print("--- ๊ฐ์ ๋ฐ์ดํฐ ๋ก๋ฉ (Train/Val/Test ๋ถ๋ฆฌ) ---")
def load_and_map_labels(file_name):
def map_ecode_to_major_emotion(ecode):
try: code_num = int(ecode[1:])
except: return None
if 10 <= code_num <= 19: return '๋ถ๋
ธ'
elif 20 <= code_num <= 29: return '์ฌํ'
elif 30 <= code_num <= 39: return '๋ถ์'
elif 40 <= code_num <= 49: return '์์ฒ'
elif 50 <= code_num <= 59: return '๋นํฉ'
elif 60 <= code_num <= 69: return '๊ธฐ์จ'
else: return None
with open(os.path.join(config.data_dir, file_name), 'r', encoding='utf-8') as f:
raw = json.load(f)
data = [{'text': " ".join(d['talk']['content'].values()), 'emotion': d['profile']['emotion']['type']} for d in raw]
df = pd.DataFrame(data)
df['major_emotion'] = df['emotion'].apply(map_ecode_to_major_emotion)
df.dropna(subset=['major_emotion'], inplace=True)
df['cleaned_text'] = df['text'].apply(clean_text)
return df
# 1. Test Set ๋ก๋ (๊ธฐ์กด validation-label.json ์ฌ์ฉ)
df_test = load_and_map_labels("test.json")
# 2. Train Set ๋ก๋ (๊ธฐ์กด training-label.json ์ฌ์ฉ)
df_train_full = load_and_map_labels("training-label.json")
# 3. Train Set์ 9:1๋ก ๋ถ๋ฆฌ (์ ๊ท Train / ์ ๊ท Validation)
label_column_str = 'major_emotion'
df_train, df_val = train_test_split(
df_train_full,
test_size=0.1, # 10%๋ฅผ Validation์ผ๋ก ์ฌ์ฉ
random_state=42, # ๊ฒฐ๊ณผ ์ฌํ์ ์ํด ๊ณ ์
stratify=df_train_full[label_column_str] # ํด๋์ค ๋น์จ์ ์ ์งํ๋ฉฐ ๋ถ๋ฆฌ
)
print(f" ์ด ์๋ณธ ํ๋ จ ๋ฐ์ดํฐ: {len(df_train_full)}๊ฐ")
print(f" [์ ๊ท] ํ๋ จ(Train)์ฉ: {len(df_train)}๊ฐ (90%)")
print(f" [์ ๊ท] ๊ฒ์ฆ(Validation)์ฉ: {len(df_val)}๊ฐ (10%)")
print(f" [์ต์ข
] ํ
์คํธ(Test)์ฉ: {len(df_test)}๊ฐ ")
return df_train, df_val, df_test
else:
raise ValueError(f"์ง์ํ์ง ์๋ ๋ชจ๋์
๋๋ค: {config.mode}")
# --- 4. ๋ฉ์ธ ์คํ ํจ์ ---
def run_training():
config = TrainingConfig()
df_train, df_val, df_test = get_data(config)
text_column = 'cleaned_text'
label_column_str = 'major_emotion'
# 2. ํ ํฌ๋์ด์ ๋ฐ ๋ผ๋ฒจ ์ธ์ฝ๋ฉ
tokenizer = AutoTokenizer.from_pretrained(config.get_model_name())
unique_labels = sorted(df_train[label_column_str].unique())
label_to_id = {label: i for i, label in enumerate(unique_labels)}
id_to_label = {i: label for label, i in label_to_id.items()}
print("\n--- ์์ฑ๋ ๋ผ๋ฒจ ์์ (0~5) ---")
print(unique_labels) # ['๊ธฐ์จ', '๋นํฉ', '๋ถ๋
ธ', '๋ถ์', '์์ฒ', '์ฌํ']
print("------------------------------")
df_train['label'] = df_train[label_column_str].map(label_to_id)
df_val['label'] = df_val[label_column_str].map(label_to_id)
df_test['label'] = df_test[label_column_str].map(label_to_id)
# 3. ๋ฐ์ดํฐ์
์์ฑ ๋ฐ ํด๋์ค ๊ฐ์ค์น ๊ณ์ฐ
train_encodings = tokenizer(list(df_train[text_column]), max_length=config.max_length, padding=True, truncation=True, return_tensors="pt")
val_encodings = tokenizer(list(df_val[text_column]), max_length=config.max_length, padding=True, truncation=True, return_tensors="pt")
train_dataset = EmotionDataset(train_encodings, df_train['label'].tolist())
val_dataset = EmotionDataset(val_encodings, df_val['label'].tolist())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"\nUsing device: {device}")
# ํด๋์ค ๊ฐ์ค์น ๊ณ์ฐ
manual_weights_list = [6.00, 4.50, 0.85, 1.80, 1.80, 0.92]
class_weights = torch.tensor(manual_weights_list, dtype=torch.float).to(device)
print(f"--- ์๋ ์ ์ฉ๋ ํด๋์ค ๊ฐ์ค์น ---")
print(f"{class_weights.tolist()}")
print(f"---------------------------------")
# 4. ๋ชจ๋ธ ๋ก๋ฉ
model = AutoModelForSequenceClassification.from_pretrained(
config.get_model_name(),
num_labels=len(unique_labels),
id2label=id_to_label,
label2id=label_to_id,
ignore_mismatched_sizes=True
).to(device)
# 5. ํ๋ จ ์คํ
training_args = TrainingArguments(
output_dir=config.get_output_dir(),
num_train_epochs=config.num_train_epochs,
per_device_train_batch_size=config.train_batch_size,
per_device_eval_batch_size=config.eval_batch_size,
learning_rate=config.learning_rate,
weight_decay=config.weight_decay,
warmup_ratio=config.warmup_ratio,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="accuracy",
lr_scheduler_type="cosine",
report_to="none"
)
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
class_weights=class_weights
)
print(f"\n '[์ ๊ท ๋ถ๋ฆฌ ๋ฐ์ดํฐ]'๋ก ๋ชจ๋ธ ํ๋ จ์ ์์ํฉ๋๋ค...")
trainer.train()
print("\n ๋ชจ๋ธ ํ๋ จ ์๋ฃ!")
output_dir = config.get_output_dir()
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
print(f"์ต์ข
๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๊ฐ {output_dir} ๊ฒฝ๋ก์ ์ ์ฅ๋์์ต๋๋ค.")
# ํ๋ จ ์ค ์ฌ์ฉํ ๊ฒ์ฆ ๋ฐ์ดํฐ(10%)์ ๋ํ ํ๊ฐ ๊ฒฐ๊ณผ
print("\n--- ์ ๊ท Validation Set(10%) ํ๊ฐ ๊ฒฐ๊ณผ (์ฐธ๊ณ ์ฉ) ---")
results = trainer.evaluate() # ๊ธฐ๋ณธ๊ฐ (eval_dataset)
print(results)
# --- ์ต์ข
Test Set์ผ๋ก '์ง์ง ์ฑ๋ฅ' ํ๊ฐ ---
print("\n" + "="*50)
print("--- ์ต์ข
Test Set์ผ๋ก '์ง์ง ์ฑ๋ฅ' ํ๊ฐ ์์ ---")
print("="*50)
# Test Set์ ์ํ ๋ฐ์ดํฐ์
์์ฑ
test_encodings = tokenizer(list(df_test[text_column]), max_length=config.max_length, padding=True, truncation=True, return_tensors="pt")
test_dataset = EmotionDataset(test_encodings, df_test['label'].tolist())
# trainer.predict()๋ฅผ ์ฌ์ฉํ์ฌ Test Set์ ๋ํ ์์ธก ์ํ
test_predictions = trainer.predict(test_dataset)
# compute_metrics ํจ์๋ฅผ ์ฌ์ฌ์ฉํ์ฌ '์ง์ง ์ฑ๋ฅ' ๊ณ์ฐ
final_metrics = compute_metrics(test_predictions)
print(f"*** ์ต์ข
Test Set '์ง์ง' ์ฑ๋ฅ ๊ฒฐ๊ณผ ***")
print(f" - ์ต์ข
Accuracy: {final_metrics['accuracy']:.4f}")
print(f" - ์ต์ข
F1-Score (Weighted): {final_metrics['f1']:.4f}")
print("="*50)
results_path = os.path.join(output_dir, "final_test_results.json")
with open(results_path, "w", encoding='utf-8') as f:
json.dump(final_metrics, f, indent=4, ensure_ascii=False)
print(f"์ต์ข
ํ
์คํธ ๊ฒฐ๊ณผ๊ฐ {results_path}์ ์ ์ฅ๋์์ต๋๋ค.")
# --- Test Set ๊ธฐ์ค ํผ๋ ํ๋ ฌ ์์ฑ ---
print("\n--- Test Set ๊ธฐ์ค ํผ๋ ํ๋ ฌ ์์ฑ ---")
y_pred = test_predictions.predictions.argmax(-1)
y_true = test_predictions.label_ids
labels = [id_to_label[i] for i in sorted(id_to_label.keys())]
cm = confusion_matrix(y_true, y_pred, labels=[label_to_id[l] for l in labels])
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)
plt.xlabel('์์ธก ๋ผ๋ฒจ (Predicted Label)')
plt.ylabel('์ค์ ๋ผ๋ฒจ (True Label)')
plt.title('Test Set Confusion Matrix')
cm_path = os.path.join(output_dir, "final_test_confusion_matrix.png")
plt.savefig(cm_path)
print(f"์ต์ข
ํผ๋ ํ๋ ฌ์ด {cm_path}์ ์ ์ฅ๋์์ต๋๋ค.")
if __name__ == "__main__":
run_training() |