File size: 6,516 Bytes
e221c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# ํŒŒ์ผ ์ด๋ฆ„: evaluate.py
# ํ•™์Šตํ•œ ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•˜๊ณ  ํ˜ผ๋™ ํ–‰๋ ฌ์„ ์ƒ์„ฑํ•˜๋Š” ์Šคํฌ๋ฆฝํŠธ

import torch
import pandas as pd
# 'from pyexpat import model' ๋ผ์ธ์€ ์™„์ „ํžˆ ์‚ญ์ œํ•ฉ๋‹ˆ๋‹ค.
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix
import os
import json
import re
import platform
import matplotlib.pyplot as plt
import seaborn as sns

# --- Matplotlib ํ•œ๊ธ€ ํฐํŠธ ์„ค์ • (์ด์ „๊ณผ ๋™์ผ) ---
try:
    if platform.system() == 'Windows':
        plt.rc('font', family='Malgun Gothic')
    elif platform.system() == 'Darwin': # Mac OS
        plt.rc('font', family='AppleGothic')
    else: # Linux
        plt.rc('font', family='NanumBarunGothic')
    plt.rcParams['axes.unicode_minus'] = False
except:
    print("ํ•œ๊ธ€ ํฐํŠธ ์„ค์ •์— ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜ํ”„์˜ ๋ผ๋ฒจ์ด ๊นจ์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.")

# --- ํ—ฌํผ(Helper) ํ•จ์ˆ˜ ๋ฐ ํด๋ž˜์Šค ์ •์˜ (์ด์ „๊ณผ ๋™์ผ) ---
class EmotionDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels
    def __getitem__(self, idx):
        item = {key: val[idx].clone().detach() for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx], dtype=torch.long)
        return item
    def __len__(self):
        return len(self.labels)

def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)
    acc = accuracy_score(labels, preds)
    precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted', zero_division=0)
    return {'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall}

# --- train_final.py์™€ ๋™์ผํ•œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋กœ์ง ์ „์ฒด๋ฅผ ์—ฌ๊ธฐ์— ์ถ”๊ฐ€ ---
def map_ecode_to_major_emotion(ecode):
    """E์ฝ”๋“œ๋ฅผ ๋Œ€๋ถ„๋ฅ˜ ๊ฐ์ •์œผ๋กœ ๋งคํ•‘ํ•˜๋Š” ํ•จ์ˆ˜"""
    try:
        code_num = int(ecode[1:])
    except (ValueError, TypeError):
        return None
    
    # ์ด ๋ถ€๋ถ„์€ train_final.py์™€ ์™„์ „ํžˆ ๋™์ผํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
    if 10 <= code_num <= 19: return '๋ถ„๋…ธ'
    elif 20 <= code_num <= 29: return '์Šฌํ””'
    elif 30 <= code_num <= 39: return '๋ถˆ์•ˆ'
    elif 40 <= code_num <= 49: return '์ƒ์ฒ˜'
    elif 50 <= code_num <= 59: return '๋‹นํ™ฉ'
    elif 60 <= code_num <= 69: return '๊ธฐ์จ'
    else: return None

def load_and_process_validation_data(file_path='./data/'):
    """JSON์„ ๋กœ๋“œํ•˜๊ณ  ๋ ˆ์ด๋ธ”์„ ํ†ตํ•ฉ/์ฒ˜๋ฆฌํ•˜๋Š” ์™„์ „ํ•œ ํ•จ์ˆ˜"""
    # ์ฃผ์˜: ์‹ค์ œ ํ…Œ์ŠคํŠธ ํŒŒ์ผ๋ช…์œผ๋กœ ๋ณ€๊ฒฝํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
    test_label_path = os.path.join(file_path, 'test.json') 
    try:
        with open(test_label_path, 'r', encoding='utf-8') as f:
            test_data_raw = json.load(f)
    except FileNotFoundError:
        print(f"์˜ค๋ฅ˜: ํ…Œ์ŠคํŠธ์šฉ ๋ผ๋ฒจ ํŒŒ์ผ '{test_label_path}'๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
        return None
        
    data = [{'text': " ".join(d['talk']['content'].values()), 'emotion': d['profile']['emotion']['type']} for d in test_data_raw]
    df_test = pd.DataFrame(data)

    df_test['major_emotion'] = df_test['emotion'].apply(map_ecode_to_major_emotion)
    df_test.dropna(subset=['major_emotion'], inplace=True)
    
    def clean_text(text):
        return re.sub(r'[^๊ฐ€-ํžฃa-zA-Z0-9 ]', '', text)
    df_test['cleaned_text'] = df_test['text'].apply(clean_text)
    
    return df_test

# --- ๋ฉ”์ธ ํ‰๊ฐ€ ๋กœ์ง ---
def evaluate_saved_model():
    """์ €์žฅ๋œ ๋ชจ๋ธ์„ ๋ถˆ๋Ÿฌ์™€ ์„ฑ๋Šฅ ํ‰๊ฐ€ ๋ฐ ํ˜ผ๋™ ํ–‰๋ ฌ์„ ์ƒ์„ฑํ•˜๋Š” ๋ฉ”์ธ ํ•จ์ˆ˜"""
    
    MODEL_PATH = "E:/Emotion/results/emotion_model_v2_manual"  
    print(f"'{MODEL_PATH}' ๊ฒฝ๋กœ์˜ ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.")

    try:
        tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
        loaded_model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
        loaded_model.config.problem_type = "single_label_classification"
    except OSError:
        print(f"์˜ค๋ฅ˜: '{MODEL_PATH}' ๊ฒฝ๋กœ์—์„œ ๋ชจ๋ธ ๋˜๋Š” ํ† ํฌ๋‚˜์ด์ €๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
        return

    df_val = load_and_process_validation_data()
    if df_val is None or df_val.empty: 
        print("์ฒ˜๋ฆฌ ํ›„ ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")
        return

    
    label2id = loaded_model.config.label2id
    id2label = loaded_model.config.id2label

    df_val['label_id'] = df_val['major_emotion'].map(label2id)
    df_val.dropna(subset=['label_id'], inplace=True)

    val_labels = df_val['label_id'].tolist()
    val_texts = df_val['cleaned_text'].tolist()
    
    val_encodings = tokenizer(val_texts, truncation=True, padding=True, max_length=128, return_tensors="pt")
    
    
    val_dataset = EmotionDataset(val_encodings, val_labels)

    training_args = TrainingArguments(
        output_dir="./results1/temp_eval",
        report_to="none"
    )

    trainer = Trainer(
        model=loaded_model, 
        args=training_args,
        compute_metrics=compute_metrics
    )

    print("ํ‰๊ฐ€๋ฅผ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค...")
    results = trainer.evaluate(eval_dataset=val_dataset)
    print("\n--- ์ตœ์ข… ํ‰๊ฐ€ ๊ฒฐ๊ณผ ---")
    print(results)
    
    # ์ตœ์ข… ํ‰๊ฐ€ ๊ฒฐ๊ณผ๋ฅผ JSON ํŒŒ์ผ๋กœ ์ €์žฅ
    results_to_save = {
        "accuracy": results.get("eval_accuracy"),
        "f1": results.get("eval_f1"),
        "loss": results.get("eval_loss") # ์†์‹ค ๊ฐ’ ์ถ”๊ฐ€
    }
    results_path = os.path.join(MODEL_PATH, "final_test_results.json")
    with open(results_path, "w", encoding='utf-8') as f:
        json.dump(results_to_save, f, indent=4, ensure_ascii=False)
    print(f"์ตœ์ข… ํ‰๊ฐ€ ๊ฒฐ๊ณผ๊ฐ€ {results_path}์— ์ €์žฅ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
    
    print("\n--- ํ˜ผ๋™ ํ–‰๋ ฌ ์ƒ์„ฑ ---")
    predictions = trainer.predict(val_dataset)
    y_pred = predictions.predictions.argmax(-1)
    y_true = predictions.label_ids

    labels = [id2label[i] for i in sorted(id2label.keys())]
    cm = confusion_matrix(y_true, y_pred)
    
    plt.figure(figsize=(10, 8))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)
    plt.xlabel('์˜ˆ์ธก ๋ผ๋ฒจ (Predicted Label)')
    plt.ylabel('์‹ค์ œ ๋ผ๋ฒจ (True Label)')
    plt.title('Confusion Matrix')
    
    cm_path = os.path.join(MODEL_PATH, "confusion_matrix.png")
    plt.savefig(cm_path)
    print(f"ํ˜ผ๋™ ํ–‰๋ ฌ์ด {cm_path}์— ์ €์žฅ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
    
if __name__ == "__main__":
    evaluate_saved_model()