Spaces:
Runtime error
Runtime error
Add nemo inference code
Browse files- README.md +1 -2
- app.py +71 -0
- packages.txt +2 -0
- requirements.txt +1 -0
README.md
CHANGED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
---
|
| 2 |
title: Nemo_conformer_rnnt_large
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 2.8.14
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 1 |
---
|
| 2 |
title: Nemo_conformer_rnnt_large
|
| 3 |
+
emoji: 🐠
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
|
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
license: apache-2.0
|
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import librosa
|
| 4 |
+
import soundfile
|
| 5 |
+
import nemo.collections.asr as nemo_asr
|
| 6 |
+
import tempfile
|
| 7 |
+
import os
|
| 8 |
+
import uuid
|
| 9 |
+
|
| 10 |
+
SAMPLE_RATE = 16000
|
| 11 |
+
|
| 12 |
+
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("stt_en_conformer_transducer_large")
|
| 13 |
+
model.change_decoding_strategy(None)
|
| 14 |
+
model.eval()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def process_audio_file(file):
|
| 18 |
+
data, sr = librosa.load(file)
|
| 19 |
+
|
| 20 |
+
if sr != SAMPLE_RATE:
|
| 21 |
+
data = librosa.resample(data, sr, SAMPLE_RATE)
|
| 22 |
+
|
| 23 |
+
# monochannel
|
| 24 |
+
data = librosa.to_mono(data)
|
| 25 |
+
return data
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def transcribe(file_mic, file_upload):
|
| 29 |
+
warn_output = ""
|
| 30 |
+
if (file_mic is not None) and (file_upload is not None):
|
| 31 |
+
warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \
|
| 32 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
| 33 |
+
file = file_mic
|
| 34 |
+
|
| 35 |
+
elif (file_mic is None) and (file_upload is None):
|
| 36 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
| 37 |
+
|
| 38 |
+
elif file_mic is not None:
|
| 39 |
+
file = file_mic
|
| 40 |
+
else:
|
| 41 |
+
file = file_upload
|
| 42 |
+
|
| 43 |
+
audio_data = process_audio_file(file)
|
| 44 |
+
|
| 45 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 46 |
+
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
|
| 47 |
+
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
|
| 48 |
+
|
| 49 |
+
transcriptions = model.transcribe([audio_path])
|
| 50 |
+
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
|
| 51 |
+
if type(transcriptions) == tuple and len(transcriptions) == 2:
|
| 52 |
+
transcriptions = transcriptions[0]
|
| 53 |
+
|
| 54 |
+
return warn_output + transcriptions[0]
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
iface = gr.Interface(
|
| 58 |
+
fn=transcribe,
|
| 59 |
+
inputs=[
|
| 60 |
+
gr.inputs.Audio(source="microphone", type='filepath', optional=True),
|
| 61 |
+
gr.inputs.Audio(source="upload", type='filepath', optional=True),
|
| 62 |
+
],
|
| 63 |
+
outputs="text",
|
| 64 |
+
layout="horizontal",
|
| 65 |
+
theme="huggingface",
|
| 66 |
+
title="NeMo Conformer Transducer Large",
|
| 67 |
+
description="Demo for speech recognition using Conformers",
|
| 68 |
+
enable_queue=True,
|
| 69 |
+
allow_flagging=False,
|
| 70 |
+
)
|
| 71 |
+
iface.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
| 2 |
+
libsndfile1
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
nemo_toolkit[asr]
|