Spaces:
Sleeping
Sleeping
Commit
·
07e4611
1
Parent(s):
27c5c44
FEATURE: Adding the secretaria de quito data
Browse files- .gitignore +1 -1
- notebooks/01_benchmark.ipynb +161 -76
- notebooks/02_data_wrangling.ipynb +773 -0
- notebooks/03_data_verification.ipynb +193 -0
- src/chronos_conference/adapters/filter_ts.py +19 -2
- src/chronos_conference/adapters/model_instance.py +0 -1
- src/chronos_conference/adapters/ts_plot.py +68 -7
- src/chronos_conference/service_layer/main.py +34 -4
- src/chronos_conference/settings.py +29 -7
.gitignore
CHANGED
|
@@ -52,7 +52,7 @@ htmlcov/
|
|
| 52 |
*.db
|
| 53 |
*.mo
|
| 54 |
|
| 55 |
-
|
| 56 |
*.xlsx
|
| 57 |
*.json
|
| 58 |
**/AutogluonModels/**
|
|
|
|
| 52 |
*.db
|
| 53 |
*.mo
|
| 54 |
|
| 55 |
+
|
| 56 |
*.xlsx
|
| 57 |
*.json
|
| 58 |
**/AutogluonModels/**
|
notebooks/01_benchmark.ipynb
CHANGED
|
@@ -37,53 +37,9 @@
|
|
| 37 |
},
|
| 38 |
{
|
| 39 |
"cell_type": "code",
|
| 40 |
-
"execution_count":
|
| 41 |
"metadata": {},
|
| 42 |
-
"outputs": [
|
| 43 |
-
{
|
| 44 |
-
"ename": "ConnectTimeout",
|
| 45 |
-
"evalue": "HTTPSConnectionPool(host='www.kaggle.com', port=443): Max retries exceeded with url: /api/v1/datasets/view/rickandjoe/electricity-transformer-dataset-etdataset (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x34a15e910>, 'Connection to www.kaggle.com timed out. (connect timeout=5)'))",
|
| 46 |
-
"output_type": "error",
|
| 47 |
-
"traceback": [
|
| 48 |
-
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
| 49 |
-
"\u001b[31mTimeoutError\u001b[39m Traceback (most recent call last)",
|
| 50 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/connection.py:198\u001b[39m, in \u001b[36mHTTPConnection._new_conn\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 197\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m198\u001b[39m sock = \u001b[43mconnection\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcreate_connection\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 199\u001b[39m \u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_dns_host\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mport\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 200\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 201\u001b[39m \u001b[43m \u001b[49m\u001b[43msource_address\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43msource_address\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 202\u001b[39m \u001b[43m \u001b[49m\u001b[43msocket_options\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43msocket_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 203\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 204\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m socket.gaierror \u001b[38;5;28;01mas\u001b[39;00m e:\n",
|
| 51 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/util/connection.py:85\u001b[39m, in \u001b[36mcreate_connection\u001b[39m\u001b[34m(address, timeout, source_address, socket_options)\u001b[39m\n\u001b[32m 84\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m---> \u001b[39m\u001b[32m85\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m err\n\u001b[32m 86\u001b[39m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[32m 87\u001b[39m \u001b[38;5;66;03m# Break explicitly a reference cycle\u001b[39;00m\n",
|
| 52 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/util/connection.py:73\u001b[39m, in \u001b[36mcreate_connection\u001b[39m\u001b[34m(address, timeout, source_address, socket_options)\u001b[39m\n\u001b[32m 72\u001b[39m sock.bind(source_address)\n\u001b[32m---> \u001b[39m\u001b[32m73\u001b[39m \u001b[43msock\u001b[49m\u001b[43m.\u001b[49m\u001b[43mconnect\u001b[49m\u001b[43m(\u001b[49m\u001b[43msa\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 74\u001b[39m \u001b[38;5;66;03m# Break explicitly a reference cycle\u001b[39;00m\n",
|
| 53 |
-
"\u001b[31mTimeoutError\u001b[39m: timed out",
|
| 54 |
-
"\nThe above exception was the direct cause of the following exception:\n",
|
| 55 |
-
"\u001b[31mConnectTimeoutError\u001b[39m Traceback (most recent call last)",
|
| 56 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/connectionpool.py:787\u001b[39m, in \u001b[36mHTTPConnectionPool.urlopen\u001b[39m\u001b[34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)\u001b[39m\n\u001b[32m 786\u001b[39m \u001b[38;5;66;03m# Make the request on the HTTPConnection object\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m787\u001b[39m response = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_make_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 788\u001b[39m \u001b[43m \u001b[49m\u001b[43mconn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 789\u001b[39m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 790\u001b[39m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 791\u001b[39m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtimeout_obj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 792\u001b[39m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[43m=\u001b[49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 793\u001b[39m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[43m=\u001b[49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 794\u001b[39m \u001b[43m \u001b[49m\u001b[43mchunked\u001b[49m\u001b[43m=\u001b[49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 795\u001b[39m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m=\u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 796\u001b[39m \u001b[43m \u001b[49m\u001b[43mresponse_conn\u001b[49m\u001b[43m=\u001b[49m\u001b[43mresponse_conn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 797\u001b[39m \u001b[43m \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[43m=\u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 798\u001b[39m \u001b[43m \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 799\u001b[39m \u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mresponse_kw\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 800\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 802\u001b[39m \u001b[38;5;66;03m# Everything went great!\u001b[39;00m\n",
|
| 57 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/connectionpool.py:488\u001b[39m, in \u001b[36mHTTPConnectionPool._make_request\u001b[39m\u001b[34m(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)\u001b[39m\n\u001b[32m 487\u001b[39m new_e = _wrap_proxy_error(new_e, conn.proxy.scheme)\n\u001b[32m--> \u001b[39m\u001b[32m488\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m new_e\n\u001b[32m 490\u001b[39m \u001b[38;5;66;03m# conn.request() calls http.client.*.request, not the method in\u001b[39;00m\n\u001b[32m 491\u001b[39m \u001b[38;5;66;03m# urllib3.request. It also calls makefile (recv) on the socket.\u001b[39;00m\n",
|
| 58 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/connectionpool.py:464\u001b[39m, in \u001b[36mHTTPConnectionPool._make_request\u001b[39m\u001b[34m(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)\u001b[39m\n\u001b[32m 463\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m464\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_validate_conn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 465\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m (SocketTimeout, BaseSSLError) \u001b[38;5;28;01mas\u001b[39;00m e:\n",
|
| 59 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/connectionpool.py:1093\u001b[39m, in \u001b[36mHTTPSConnectionPool._validate_conn\u001b[39m\u001b[34m(self, conn)\u001b[39m\n\u001b[32m 1092\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m conn.is_closed:\n\u001b[32m-> \u001b[39m\u001b[32m1093\u001b[39m \u001b[43mconn\u001b[49m\u001b[43m.\u001b[49m\u001b[43mconnect\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1095\u001b[39m \u001b[38;5;66;03m# TODO revise this, see https://github.com/urllib3/urllib3/issues/2791\u001b[39;00m\n",
|
| 60 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/connection.py:753\u001b[39m, in \u001b[36mHTTPSConnection.connect\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 752\u001b[39m sock: socket.socket | ssl.SSLSocket\n\u001b[32m--> \u001b[39m\u001b[32m753\u001b[39m \u001b[38;5;28mself\u001b[39m.sock = sock = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_new_conn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 754\u001b[39m server_hostname: \u001b[38;5;28mstr\u001b[39m = \u001b[38;5;28mself\u001b[39m.host\n",
|
| 61 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/connection.py:207\u001b[39m, in \u001b[36mHTTPConnection._new_conn\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 206\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m SocketTimeout \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m--> \u001b[39m\u001b[32m207\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m ConnectTimeoutError(\n\u001b[32m 208\u001b[39m \u001b[38;5;28mself\u001b[39m,\n\u001b[32m 209\u001b[39m \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mConnection to \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m.host\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m timed out. (connect timeout=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m.timeout\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m)\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 210\u001b[39m ) \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01me\u001b[39;00m\n\u001b[32m 212\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
|
| 62 |
-
"\u001b[31mConnectTimeoutError\u001b[39m: (<urllib3.connection.HTTPSConnection object at 0x34a15e910>, 'Connection to www.kaggle.com timed out. (connect timeout=5)')",
|
| 63 |
-
"\nThe above exception was the direct cause of the following exception:\n",
|
| 64 |
-
"\u001b[31mMaxRetryError\u001b[39m Traceback (most recent call last)",
|
| 65 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/requests/adapters.py:644\u001b[39m, in \u001b[36mHTTPAdapter.send\u001b[39m\u001b[34m(self, request, stream, timeout, verify, cert, proxies)\u001b[39m\n\u001b[32m 643\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m644\u001b[39m resp = \u001b[43mconn\u001b[49m\u001b[43m.\u001b[49m\u001b[43murlopen\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 645\u001b[39m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m=\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m.\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 646\u001b[39m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m=\u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 647\u001b[39m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[43m=\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m.\u001b[49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 648\u001b[39m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[43m=\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m.\u001b[49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 649\u001b[39m \u001b[43m \u001b[49m\u001b[43mredirect\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 650\u001b[39m \u001b[43m \u001b[49m\u001b[43massert_same_host\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 651\u001b[39m \u001b[43m \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 652\u001b[39m \u001b[43m \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 653\u001b[39m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 654\u001b[39m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 655\u001b[39m \u001b[43m \u001b[49m\u001b[43mchunked\u001b[49m\u001b[43m=\u001b[49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 656\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 658\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m (ProtocolError, \u001b[38;5;167;01mOSError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m err:\n",
|
| 66 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/connectionpool.py:841\u001b[39m, in \u001b[36mHTTPConnectionPool.urlopen\u001b[39m\u001b[34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)\u001b[39m\n\u001b[32m 839\u001b[39m new_e = ProtocolError(\u001b[33m\"\u001b[39m\u001b[33mConnection aborted.\u001b[39m\u001b[33m\"\u001b[39m, new_e)\n\u001b[32m--> \u001b[39m\u001b[32m841\u001b[39m retries = \u001b[43mretries\u001b[49m\u001b[43m.\u001b[49m\u001b[43mincrement\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 842\u001b[39m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merror\u001b[49m\u001b[43m=\u001b[49m\u001b[43mnew_e\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_pool\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_stacktrace\u001b[49m\u001b[43m=\u001b[49m\u001b[43msys\u001b[49m\u001b[43m.\u001b[49m\u001b[43mexc_info\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m[\u001b[49m\u001b[32;43m2\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[32m 843\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 844\u001b[39m retries.sleep()\n",
|
| 67 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/urllib3/util/retry.py:519\u001b[39m, in \u001b[36mRetry.increment\u001b[39m\u001b[34m(self, method, url, response, error, _pool, _stacktrace)\u001b[39m\n\u001b[32m 518\u001b[39m reason = error \u001b[38;5;129;01mor\u001b[39;00m ResponseError(cause)\n\u001b[32m--> \u001b[39m\u001b[32m519\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m MaxRetryError(_pool, url, reason) \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mreason\u001b[39;00m \u001b[38;5;66;03m# type: ignore[arg-type]\u001b[39;00m\n\u001b[32m 521\u001b[39m log.debug(\u001b[33m\"\u001b[39m\u001b[33mIncremented Retry for (url=\u001b[39m\u001b[33m'\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[33m'\u001b[39m\u001b[33m): \u001b[39m\u001b[38;5;132;01m%r\u001b[39;00m\u001b[33m\"\u001b[39m, url, new_retry)\n",
|
| 68 |
-
"\u001b[31mMaxRetryError\u001b[39m: HTTPSConnectionPool(host='www.kaggle.com', port=443): Max retries exceeded with url: /api/v1/datasets/view/rickandjoe/electricity-transformer-dataset-etdataset (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x34a15e910>, 'Connection to www.kaggle.com timed out. (connect timeout=5)'))",
|
| 69 |
-
"\nDuring handling of the above exception, another exception occurred:\n",
|
| 70 |
-
"\u001b[31mConnectTimeout\u001b[39m Traceback (most recent call last)",
|
| 71 |
-
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[197]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m path = \u001b[43mkagglehub\u001b[49m\u001b[43m.\u001b[49m\u001b[43mdataset_download\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mrickandjoe/electricity-transformer-dataset-etdataset\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
| 72 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/kagglehub/datasets.py:43\u001b[39m, in \u001b[36mdataset_download\u001b[39m\u001b[34m(handle, path, force_download)\u001b[39m\n\u001b[32m 41\u001b[39m h = parse_dataset_handle(handle)\n\u001b[32m 42\u001b[39m logger.info(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mDownloading Dataset: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mh.to_url()\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m ...\u001b[39m\u001b[33m\"\u001b[39m, extra={**EXTRA_CONSOLE_BLOCK})\n\u001b[32m---> \u001b[39m\u001b[32m43\u001b[39m path, _ = \u001b[43mregistry\u001b[49m\u001b[43m.\u001b[49m\u001b[43mdataset_resolver\u001b[49m\u001b[43m(\u001b[49m\u001b[43mh\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mforce_download\u001b[49m\u001b[43m=\u001b[49m\u001b[43mforce_download\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 44\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m path\n",
|
| 73 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/kagglehub/registry.py:28\u001b[39m, in \u001b[36mMultiImplRegistry.__call__\u001b[39m\u001b[34m(self, *args, **kwargs)\u001b[39m\n\u001b[32m 26\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m impl \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mreversed\u001b[39m(\u001b[38;5;28mself\u001b[39m._impls):\n\u001b[32m 27\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m impl.is_supported(*args, **kwargs):\n\u001b[32m---> \u001b[39m\u001b[32m28\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mimpl\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 29\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 30\u001b[39m fails.append(\u001b[38;5;28mtype\u001b[39m(impl).\u001b[34m__name__\u001b[39m)\n",
|
| 74 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/kagglehub/resolver.py:29\u001b[39m, in \u001b[36mResolver.__call__\u001b[39m\u001b[34m(self, handle, path, force_download)\u001b[39m\n\u001b[32m 15\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34m__call__\u001b[39m(\n\u001b[32m 16\u001b[39m \u001b[38;5;28mself\u001b[39m, handle: T, path: Optional[\u001b[38;5;28mstr\u001b[39m] = \u001b[38;5;28;01mNone\u001b[39;00m, *, force_download: Optional[\u001b[38;5;28mbool\u001b[39m] = \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[32m 17\u001b[39m ) -> \u001b[38;5;28mtuple\u001b[39m[\u001b[38;5;28mstr\u001b[39m, Optional[\u001b[38;5;28mint\u001b[39m]]:\n\u001b[32m 18\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Resolves a handle into a path with the requested file(s) and the resource's version number.\u001b[39;00m\n\u001b[32m 19\u001b[39m \n\u001b[32m 20\u001b[39m \u001b[33;03m Args:\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 27\u001b[39m \u001b[33;03m Some cases where version number might be missing: Competition datasource, API-based models.\u001b[39;00m\n\u001b[32m 28\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m---> \u001b[39m\u001b[32m29\u001b[39m path, version = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_resolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mforce_download\u001b[49m\u001b[43m=\u001b[49m\u001b[43mforce_download\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 31\u001b[39m \u001b[38;5;66;03m# Note handles are immutable, so _resolve() could not have altered our reference\u001b[39;00m\n\u001b[32m 32\u001b[39m register_datasource_access(handle, version)\n",
|
| 75 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/kagglehub/http_resolver.py:107\u001b[39m, in \u001b[36mDatasetHttpResolver._resolve\u001b[39m\u001b[34m(self, h, path, force_download)\u001b[39m\n\u001b[32m 104\u001b[39m api_client = KaggleApiV1Client()\n\u001b[32m 106\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m h.is_versioned():\n\u001b[32m--> \u001b[39m\u001b[32m107\u001b[39m h = h.with_version(\u001b[43m_get_current_version\u001b[49m\u001b[43m(\u001b[49m\u001b[43mapi_client\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mh\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[32m 109\u001b[39m dataset_path = load_from_cache(h, path)\n\u001b[32m 110\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m dataset_path \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m force_download:\n",
|
| 76 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/kagglehub/http_resolver.py:290\u001b[39m, in \u001b[36m_get_current_version\u001b[39m\u001b[34m(api_client, h)\u001b[39m\n\u001b[32m 287\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m json_response[MODEL_INSTANCE_VERSION_FIELD]\n\u001b[32m 289\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(h, DatasetHandle):\n\u001b[32m--> \u001b[39m\u001b[32m290\u001b[39m json_response = \u001b[43mapi_client\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_build_get_dataset_url_path\u001b[49m\u001b[43m(\u001b[49m\u001b[43mh\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mh\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 291\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m DATASET_CURRENT_VERSION_FIELD \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m json_response:\n\u001b[32m 292\u001b[39m msg = \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mInvalid GetDataset API response. Expected to include a \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mDATASET_CURRENT_VERSION_FIELD\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m field\u001b[39m\u001b[33m\"\u001b[39m\n",
|
| 77 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/kagglehub/clients.py:133\u001b[39m, in \u001b[36mKaggleApiV1Client.get\u001b[39m\u001b[34m(self, path, resource_handle)\u001b[39m\n\u001b[32m 131\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mget\u001b[39m(\u001b[38;5;28mself\u001b[39m, path: \u001b[38;5;28mstr\u001b[39m, resource_handle: Optional[ResourceHandle] = \u001b[38;5;28;01mNone\u001b[39;00m) -> \u001b[38;5;28mdict\u001b[39m:\n\u001b[32m 132\u001b[39m url = \u001b[38;5;28mself\u001b[39m._build_url(path)\n\u001b[32m--> \u001b[39m\u001b[32m133\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[43mrequests\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 134\u001b[39m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 135\u001b[39m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[43m=\u001b[49m\u001b[43m{\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mUser-Agent\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mget_user_agent\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 136\u001b[39m \u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_get_auth\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 137\u001b[39m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m=\u001b[49m\u001b[43m(\u001b[49m\u001b[43mDEFAULT_CONNECT_TIMEOUT\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mDEFAULT_READ_TIMEOUT\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 138\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m response:\n\u001b[32m 139\u001b[39m kaggle_api_raise_for_status(response, resource_handle)\n\u001b[32m 140\u001b[39m \u001b[38;5;28mself\u001b[39m._check_for_version_update(response)\n",
|
| 78 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/requests/api.py:73\u001b[39m, in \u001b[36mget\u001b[39m\u001b[34m(url, params, **kwargs)\u001b[39m\n\u001b[32m 62\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mget\u001b[39m(url, params=\u001b[38;5;28;01mNone\u001b[39;00m, **kwargs):\n\u001b[32m 63\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33mr\u001b[39m\u001b[33;03m\"\"\"Sends a GET request.\u001b[39;00m\n\u001b[32m 64\u001b[39m \n\u001b[32m 65\u001b[39m \u001b[33;03m :param url: URL for the new :class:`Request` object.\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 70\u001b[39m \u001b[33;03m :rtype: requests.Response\u001b[39;00m\n\u001b[32m 71\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m---> \u001b[39m\u001b[32m73\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mget\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m=\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 79 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/requests/api.py:59\u001b[39m, in \u001b[36mrequest\u001b[39m\u001b[34m(method, url, **kwargs)\u001b[39m\n\u001b[32m 55\u001b[39m \u001b[38;5;66;03m# By using the 'with' statement we are sure the session is closed, thus we\u001b[39;00m\n\u001b[32m 56\u001b[39m \u001b[38;5;66;03m# avoid leaving sockets open which can trigger a ResourceWarning in some\u001b[39;00m\n\u001b[32m 57\u001b[39m \u001b[38;5;66;03m# cases, and look like a memory leak in others.\u001b[39;00m\n\u001b[32m 58\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m sessions.Session() \u001b[38;5;28;01mas\u001b[39;00m session:\n\u001b[32m---> \u001b[39m\u001b[32m59\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msession\u001b[49m\u001b[43m.\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m=\u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 80 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/requests/sessions.py:589\u001b[39m, in \u001b[36mSession.request\u001b[39m\u001b[34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[39m\n\u001b[32m 584\u001b[39m send_kwargs = {\n\u001b[32m 585\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mtimeout\u001b[39m\u001b[33m\"\u001b[39m: timeout,\n\u001b[32m 586\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mallow_redirects\u001b[39m\u001b[33m\"\u001b[39m: allow_redirects,\n\u001b[32m 587\u001b[39m }\n\u001b[32m 588\u001b[39m send_kwargs.update(settings)\n\u001b[32m--> \u001b[39m\u001b[32m589\u001b[39m resp = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43msend_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 591\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n",
|
| 81 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/requests/sessions.py:703\u001b[39m, in \u001b[36mSession.send\u001b[39m\u001b[34m(self, request, **kwargs)\u001b[39m\n\u001b[32m 700\u001b[39m start = preferred_clock()\n\u001b[32m 702\u001b[39m \u001b[38;5;66;03m# Send the request\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m703\u001b[39m r = \u001b[43madapter\u001b[49m\u001b[43m.\u001b[49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 705\u001b[39m \u001b[38;5;66;03m# Total elapsed time of the request (approximately)\u001b[39;00m\n\u001b[32m 706\u001b[39m elapsed = preferred_clock() - start\n",
|
| 82 |
-
"\u001b[36mFile \u001b[39m\u001b[32m/opt/anaconda3/envs/aws_conf/lib/python3.11/site-packages/requests/adapters.py:665\u001b[39m, in \u001b[36mHTTPAdapter.send\u001b[39m\u001b[34m(self, request, stream, timeout, verify, cert, proxies)\u001b[39m\n\u001b[32m 662\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e.reason, ConnectTimeoutError):\n\u001b[32m 663\u001b[39m \u001b[38;5;66;03m# TODO: Remove this in 3.0.0: see #2811\u001b[39;00m\n\u001b[32m 664\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e.reason, NewConnectionError):\n\u001b[32m--> \u001b[39m\u001b[32m665\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m ConnectTimeout(e, request=request)\n\u001b[32m 667\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e.reason, ResponseError):\n\u001b[32m 668\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m RetryError(e, request=request)\n",
|
| 83 |
-
"\u001b[31mConnectTimeout\u001b[39m: HTTPSConnectionPool(host='www.kaggle.com', port=443): Max retries exceeded with url: /api/v1/datasets/view/rickandjoe/electricity-transformer-dataset-etdataset (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x34a15e910>, 'Connection to www.kaggle.com timed out. (connect timeout=5)'))"
|
| 84 |
-
]
|
| 85 |
-
}
|
| 86 |
-
],
|
| 87 |
"source": [
|
| 88 |
"path = kagglehub.dataset_download(\n",
|
| 89 |
" \"rickandjoe/electricity-transformer-dataset-etdataset\"\n",
|
|
@@ -99,7 +55,7 @@
|
|
| 99 |
},
|
| 100 |
{
|
| 101 |
"cell_type": "code",
|
| 102 |
-
"execution_count":
|
| 103 |
"metadata": {},
|
| 104 |
"outputs": [],
|
| 105 |
"source": [
|
|
@@ -108,7 +64,7 @@
|
|
| 108 |
},
|
| 109 |
{
|
| 110 |
"cell_type": "code",
|
| 111 |
-
"execution_count":
|
| 112 |
"metadata": {},
|
| 113 |
"outputs": [],
|
| 114 |
"source": [
|
|
@@ -117,7 +73,7 @@
|
|
| 117 |
},
|
| 118 |
{
|
| 119 |
"cell_type": "code",
|
| 120 |
-
"execution_count":
|
| 121 |
"metadata": {},
|
| 122 |
"outputs": [],
|
| 123 |
"source": [
|
|
@@ -126,7 +82,7 @@
|
|
| 126 |
},
|
| 127 |
{
|
| 128 |
"cell_type": "code",
|
| 129 |
-
"execution_count":
|
| 130 |
"metadata": {},
|
| 131 |
"outputs": [],
|
| 132 |
"source": [
|
|
@@ -142,7 +98,7 @@
|
|
| 142 |
},
|
| 143 |
{
|
| 144 |
"cell_type": "code",
|
| 145 |
-
"execution_count":
|
| 146 |
"metadata": {},
|
| 147 |
"outputs": [],
|
| 148 |
"source": [
|
|
@@ -158,7 +114,7 @@
|
|
| 158 |
},
|
| 159 |
{
|
| 160 |
"cell_type": "code",
|
| 161 |
-
"execution_count":
|
| 162 |
"metadata": {},
|
| 163 |
"outputs": [],
|
| 164 |
"source": [
|
|
@@ -174,7 +130,7 @@
|
|
| 174 |
},
|
| 175 |
{
|
| 176 |
"cell_type": "code",
|
| 177 |
-
"execution_count":
|
| 178 |
"metadata": {},
|
| 179 |
"outputs": [],
|
| 180 |
"source": [
|
|
@@ -190,7 +146,7 @@
|
|
| 190 |
},
|
| 191 |
{
|
| 192 |
"cell_type": "code",
|
| 193 |
-
"execution_count":
|
| 194 |
"metadata": {},
|
| 195 |
"outputs": [],
|
| 196 |
"source": [
|
|
@@ -199,7 +155,7 @@
|
|
| 199 |
},
|
| 200 |
{
|
| 201 |
"cell_type": "code",
|
| 202 |
-
"execution_count":
|
| 203 |
"metadata": {},
|
| 204 |
"outputs": [],
|
| 205 |
"source": [
|
|
@@ -208,13 +164,142 @@
|
|
| 208 |
},
|
| 209 |
{
|
| 210 |
"cell_type": "code",
|
| 211 |
-
"execution_count":
|
| 212 |
"metadata": {},
|
| 213 |
"outputs": [],
|
| 214 |
"source": [
|
| 215 |
"df_final = df_final.sort_values([\"unique_id\", \"ds\"])"
|
| 216 |
]
|
| 217 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
{
|
| 219 |
"cell_type": "markdown",
|
| 220 |
"metadata": {},
|
|
@@ -231,7 +316,7 @@
|
|
| 231 |
},
|
| 232 |
{
|
| 233 |
"cell_type": "code",
|
| 234 |
-
"execution_count":
|
| 235 |
"metadata": {},
|
| 236 |
"outputs": [],
|
| 237 |
"source": [
|
|
@@ -247,7 +332,7 @@
|
|
| 247 |
},
|
| 248 |
{
|
| 249 |
"cell_type": "code",
|
| 250 |
-
"execution_count":
|
| 251 |
"metadata": {},
|
| 252 |
"outputs": [],
|
| 253 |
"source": [
|
|
@@ -278,7 +363,7 @@
|
|
| 278 |
},
|
| 279 |
{
|
| 280 |
"cell_type": "code",
|
| 281 |
-
"execution_count":
|
| 282 |
"metadata": {},
|
| 283 |
"outputs": [],
|
| 284 |
"source": [
|
|
@@ -309,7 +394,7 @@
|
|
| 309 |
},
|
| 310 |
{
|
| 311 |
"cell_type": "code",
|
| 312 |
-
"execution_count":
|
| 313 |
"metadata": {},
|
| 314 |
"outputs": [],
|
| 315 |
"source": [
|
|
@@ -346,7 +431,7 @@
|
|
| 346 |
},
|
| 347 |
{
|
| 348 |
"cell_type": "code",
|
| 349 |
-
"execution_count":
|
| 350 |
"metadata": {},
|
| 351 |
"outputs": [],
|
| 352 |
"source": [
|
|
@@ -399,7 +484,7 @@
|
|
| 399 |
},
|
| 400 |
{
|
| 401 |
"cell_type": "code",
|
| 402 |
-
"execution_count":
|
| 403 |
"metadata": {},
|
| 404 |
"outputs": [],
|
| 405 |
"source": [
|
|
@@ -408,7 +493,7 @@
|
|
| 408 |
},
|
| 409 |
{
|
| 410 |
"cell_type": "code",
|
| 411 |
-
"execution_count":
|
| 412 |
"metadata": {},
|
| 413 |
"outputs": [],
|
| 414 |
"source": [
|
|
@@ -417,7 +502,7 @@
|
|
| 417 |
},
|
| 418 |
{
|
| 419 |
"cell_type": "code",
|
| 420 |
-
"execution_count":
|
| 421 |
"metadata": {},
|
| 422 |
"outputs": [],
|
| 423 |
"source": [
|
|
@@ -426,7 +511,7 @@
|
|
| 426 |
},
|
| 427 |
{
|
| 428 |
"cell_type": "code",
|
| 429 |
-
"execution_count":
|
| 430 |
"metadata": {},
|
| 431 |
"outputs": [],
|
| 432 |
"source": [
|
|
@@ -449,7 +534,7 @@
|
|
| 449 |
},
|
| 450 |
{
|
| 451 |
"cell_type": "code",
|
| 452 |
-
"execution_count":
|
| 453 |
"metadata": {},
|
| 454 |
"outputs": [],
|
| 455 |
"source": [
|
|
@@ -458,7 +543,7 @@
|
|
| 458 |
},
|
| 459 |
{
|
| 460 |
"cell_type": "code",
|
| 461 |
-
"execution_count":
|
| 462 |
"metadata": {},
|
| 463 |
"outputs": [],
|
| 464 |
"source": [
|
|
@@ -467,7 +552,7 @@
|
|
| 467 |
},
|
| 468 |
{
|
| 469 |
"cell_type": "code",
|
| 470 |
-
"execution_count":
|
| 471 |
"metadata": {},
|
| 472 |
"outputs": [],
|
| 473 |
"source": [
|
|
@@ -483,7 +568,7 @@
|
|
| 483 |
},
|
| 484 |
{
|
| 485 |
"cell_type": "code",
|
| 486 |
-
"execution_count":
|
| 487 |
"metadata": {},
|
| 488 |
"outputs": [],
|
| 489 |
"source": [
|
|
@@ -501,7 +586,7 @@
|
|
| 501 |
},
|
| 502 |
{
|
| 503 |
"cell_type": "code",
|
| 504 |
-
"execution_count":
|
| 505 |
"metadata": {},
|
| 506 |
"outputs": [
|
| 507 |
{
|
|
@@ -511,7 +596,7 @@
|
|
| 511 |
"<Figure size 1600x350 with 2 Axes>"
|
| 512 |
]
|
| 513 |
},
|
| 514 |
-
"execution_count":
|
| 515 |
"metadata": {},
|
| 516 |
"output_type": "execute_result"
|
| 517 |
}
|
|
@@ -536,7 +621,7 @@
|
|
| 536 |
},
|
| 537 |
{
|
| 538 |
"cell_type": "code",
|
| 539 |
-
"execution_count":
|
| 540 |
"metadata": {},
|
| 541 |
"outputs": [],
|
| 542 |
"source": [
|
|
@@ -556,7 +641,7 @@
|
|
| 556 |
},
|
| 557 |
{
|
| 558 |
"cell_type": "code",
|
| 559 |
-
"execution_count":
|
| 560 |
"metadata": {},
|
| 561 |
"outputs": [],
|
| 562 |
"source": [
|
|
@@ -565,7 +650,7 @@
|
|
| 565 |
},
|
| 566 |
{
|
| 567 |
"cell_type": "code",
|
| 568 |
-
"execution_count":
|
| 569 |
"metadata": {},
|
| 570 |
"outputs": [],
|
| 571 |
"source": [
|
|
@@ -578,7 +663,7 @@
|
|
| 578 |
},
|
| 579 |
{
|
| 580 |
"cell_type": "code",
|
| 581 |
-
"execution_count":
|
| 582 |
"metadata": {},
|
| 583 |
"outputs": [
|
| 584 |
{
|
|
@@ -625,7 +710,7 @@
|
|
| 625 |
"0 9.148477 18.487053 27.713882 27.880458"
|
| 626 |
]
|
| 627 |
},
|
| 628 |
-
"execution_count":
|
| 629 |
"metadata": {},
|
| 630 |
"output_type": "execute_result"
|
| 631 |
}
|
|
|
|
| 37 |
},
|
| 38 |
{
|
| 39 |
"cell_type": "code",
|
| 40 |
+
"execution_count": 2,
|
| 41 |
"metadata": {},
|
| 42 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"source": [
|
| 44 |
"path = kagglehub.dataset_download(\n",
|
| 45 |
" \"rickandjoe/electricity-transformer-dataset-etdataset\"\n",
|
|
|
|
| 55 |
},
|
| 56 |
{
|
| 57 |
"cell_type": "code",
|
| 58 |
+
"execution_count": 3,
|
| 59 |
"metadata": {},
|
| 60 |
"outputs": [],
|
| 61 |
"source": [
|
|
|
|
| 64 |
},
|
| 65 |
{
|
| 66 |
"cell_type": "code",
|
| 67 |
+
"execution_count": 4,
|
| 68 |
"metadata": {},
|
| 69 |
"outputs": [],
|
| 70 |
"source": [
|
|
|
|
| 73 |
},
|
| 74 |
{
|
| 75 |
"cell_type": "code",
|
| 76 |
+
"execution_count": 5,
|
| 77 |
"metadata": {},
|
| 78 |
"outputs": [],
|
| 79 |
"source": [
|
|
|
|
| 82 |
},
|
| 83 |
{
|
| 84 |
"cell_type": "code",
|
| 85 |
+
"execution_count": 6,
|
| 86 |
"metadata": {},
|
| 87 |
"outputs": [],
|
| 88 |
"source": [
|
|
|
|
| 98 |
},
|
| 99 |
{
|
| 100 |
"cell_type": "code",
|
| 101 |
+
"execution_count": 7,
|
| 102 |
"metadata": {},
|
| 103 |
"outputs": [],
|
| 104 |
"source": [
|
|
|
|
| 114 |
},
|
| 115 |
{
|
| 116 |
"cell_type": "code",
|
| 117 |
+
"execution_count": 8,
|
| 118 |
"metadata": {},
|
| 119 |
"outputs": [],
|
| 120 |
"source": [
|
|
|
|
| 130 |
},
|
| 131 |
{
|
| 132 |
"cell_type": "code",
|
| 133 |
+
"execution_count": 9,
|
| 134 |
"metadata": {},
|
| 135 |
"outputs": [],
|
| 136 |
"source": [
|
|
|
|
| 146 |
},
|
| 147 |
{
|
| 148 |
"cell_type": "code",
|
| 149 |
+
"execution_count": 10,
|
| 150 |
"metadata": {},
|
| 151 |
"outputs": [],
|
| 152 |
"source": [
|
|
|
|
| 155 |
},
|
| 156 |
{
|
| 157 |
"cell_type": "code",
|
| 158 |
+
"execution_count": 11,
|
| 159 |
"metadata": {},
|
| 160 |
"outputs": [],
|
| 161 |
"source": [
|
|
|
|
| 164 |
},
|
| 165 |
{
|
| 166 |
"cell_type": "code",
|
| 167 |
+
"execution_count": 12,
|
| 168 |
"metadata": {},
|
| 169 |
"outputs": [],
|
| 170 |
"source": [
|
| 171 |
"df_final = df_final.sort_values([\"unique_id\", \"ds\"])"
|
| 172 |
]
|
| 173 |
},
|
| 174 |
+
{
|
| 175 |
+
"cell_type": "code",
|
| 176 |
+
"execution_count": 33,
|
| 177 |
+
"metadata": {},
|
| 178 |
+
"outputs": [
|
| 179 |
+
{
|
| 180 |
+
"data": {
|
| 181 |
+
"text/html": [
|
| 182 |
+
"<div>\n",
|
| 183 |
+
"<style scoped>\n",
|
| 184 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 185 |
+
" vertical-align: middle;\n",
|
| 186 |
+
" }\n",
|
| 187 |
+
"\n",
|
| 188 |
+
" .dataframe tbody tr th {\n",
|
| 189 |
+
" vertical-align: top;\n",
|
| 190 |
+
" }\n",
|
| 191 |
+
"\n",
|
| 192 |
+
" .dataframe thead th {\n",
|
| 193 |
+
" text-align: right;\n",
|
| 194 |
+
" }\n",
|
| 195 |
+
"</style>\n",
|
| 196 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 197 |
+
" <thead>\n",
|
| 198 |
+
" <tr style=\"text-align: right;\">\n",
|
| 199 |
+
" <th></th>\n",
|
| 200 |
+
" <th>ds</th>\n",
|
| 201 |
+
" <th>unique_id</th>\n",
|
| 202 |
+
" <th>y</th>\n",
|
| 203 |
+
" </tr>\n",
|
| 204 |
+
" </thead>\n",
|
| 205 |
+
" <tbody>\n",
|
| 206 |
+
" <tr>\n",
|
| 207 |
+
" <th>0</th>\n",
|
| 208 |
+
" <td>2016-07-01 00:00:00</td>\n",
|
| 209 |
+
" <td>transformer_1</td>\n",
|
| 210 |
+
" <td>30.531000</td>\n",
|
| 211 |
+
" </tr>\n",
|
| 212 |
+
" <tr>\n",
|
| 213 |
+
" <th>1</th>\n",
|
| 214 |
+
" <td>2016-07-01 01:00:00</td>\n",
|
| 215 |
+
" <td>transformer_1</td>\n",
|
| 216 |
+
" <td>27.787001</td>\n",
|
| 217 |
+
" </tr>\n",
|
| 218 |
+
" <tr>\n",
|
| 219 |
+
" <th>2</th>\n",
|
| 220 |
+
" <td>2016-07-01 02:00:00</td>\n",
|
| 221 |
+
" <td>transformer_1</td>\n",
|
| 222 |
+
" <td>27.787001</td>\n",
|
| 223 |
+
" </tr>\n",
|
| 224 |
+
" <tr>\n",
|
| 225 |
+
" <th>3</th>\n",
|
| 226 |
+
" <td>2016-07-01 03:00:00</td>\n",
|
| 227 |
+
" <td>transformer_1</td>\n",
|
| 228 |
+
" <td>25.044001</td>\n",
|
| 229 |
+
" </tr>\n",
|
| 230 |
+
" <tr>\n",
|
| 231 |
+
" <th>4</th>\n",
|
| 232 |
+
" <td>2016-07-01 04:00:00</td>\n",
|
| 233 |
+
" <td>transformer_1</td>\n",
|
| 234 |
+
" <td>21.948000</td>\n",
|
| 235 |
+
" </tr>\n",
|
| 236 |
+
" <tr>\n",
|
| 237 |
+
" <th>...</th>\n",
|
| 238 |
+
" <td>...</td>\n",
|
| 239 |
+
" <td>...</td>\n",
|
| 240 |
+
" <td>...</td>\n",
|
| 241 |
+
" </tr>\n",
|
| 242 |
+
" <tr>\n",
|
| 243 |
+
" <th>34835</th>\n",
|
| 244 |
+
" <td>2018-06-26 15:00:00</td>\n",
|
| 245 |
+
" <td>transformer_2</td>\n",
|
| 246 |
+
" <td>47.084999</td>\n",
|
| 247 |
+
" </tr>\n",
|
| 248 |
+
" <tr>\n",
|
| 249 |
+
" <th>34836</th>\n",
|
| 250 |
+
" <td>2018-06-26 16:00:00</td>\n",
|
| 251 |
+
" <td>transformer_2</td>\n",
|
| 252 |
+
" <td>48.183498</td>\n",
|
| 253 |
+
" </tr>\n",
|
| 254 |
+
" <tr>\n",
|
| 255 |
+
" <th>34837</th>\n",
|
| 256 |
+
" <td>2018-06-26 17:00:00</td>\n",
|
| 257 |
+
" <td>transformer_2</td>\n",
|
| 258 |
+
" <td>48.183498</td>\n",
|
| 259 |
+
" </tr>\n",
|
| 260 |
+
" <tr>\n",
|
| 261 |
+
" <th>34838</th>\n",
|
| 262 |
+
" <td>2018-06-26 18:00:00</td>\n",
|
| 263 |
+
" <td>transformer_2</td>\n",
|
| 264 |
+
" <td>46.865501</td>\n",
|
| 265 |
+
" </tr>\n",
|
| 266 |
+
" <tr>\n",
|
| 267 |
+
" <th>34839</th>\n",
|
| 268 |
+
" <td>2018-06-26 19:00:00</td>\n",
|
| 269 |
+
" <td>transformer_2</td>\n",
|
| 270 |
+
" <td>45.986500</td>\n",
|
| 271 |
+
" </tr>\n",
|
| 272 |
+
" </tbody>\n",
|
| 273 |
+
"</table>\n",
|
| 274 |
+
"<p>34840 rows × 3 columns</p>\n",
|
| 275 |
+
"</div>"
|
| 276 |
+
],
|
| 277 |
+
"text/plain": [
|
| 278 |
+
" ds unique_id y\n",
|
| 279 |
+
"0 2016-07-01 00:00:00 transformer_1 30.531000\n",
|
| 280 |
+
"1 2016-07-01 01:00:00 transformer_1 27.787001\n",
|
| 281 |
+
"2 2016-07-01 02:00:00 transformer_1 27.787001\n",
|
| 282 |
+
"3 2016-07-01 03:00:00 transformer_1 25.044001\n",
|
| 283 |
+
"4 2016-07-01 04:00:00 transformer_1 21.948000\n",
|
| 284 |
+
"... ... ... ...\n",
|
| 285 |
+
"34835 2018-06-26 15:00:00 transformer_2 47.084999\n",
|
| 286 |
+
"34836 2018-06-26 16:00:00 transformer_2 48.183498\n",
|
| 287 |
+
"34837 2018-06-26 17:00:00 transformer_2 48.183498\n",
|
| 288 |
+
"34838 2018-06-26 18:00:00 transformer_2 46.865501\n",
|
| 289 |
+
"34839 2018-06-26 19:00:00 transformer_2 45.986500\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"[34840 rows x 3 columns]"
|
| 292 |
+
]
|
| 293 |
+
},
|
| 294 |
+
"execution_count": 33,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"output_type": "execute_result"
|
| 297 |
+
}
|
| 298 |
+
],
|
| 299 |
+
"source": [
|
| 300 |
+
"df_final"
|
| 301 |
+
]
|
| 302 |
+
},
|
| 303 |
{
|
| 304 |
"cell_type": "markdown",
|
| 305 |
"metadata": {},
|
|
|
|
| 316 |
},
|
| 317 |
{
|
| 318 |
"cell_type": "code",
|
| 319 |
+
"execution_count": 13,
|
| 320 |
"metadata": {},
|
| 321 |
"outputs": [],
|
| 322 |
"source": [
|
|
|
|
| 332 |
},
|
| 333 |
{
|
| 334 |
"cell_type": "code",
|
| 335 |
+
"execution_count": 14,
|
| 336 |
"metadata": {},
|
| 337 |
"outputs": [],
|
| 338 |
"source": [
|
|
|
|
| 363 |
},
|
| 364 |
{
|
| 365 |
"cell_type": "code",
|
| 366 |
+
"execution_count": 15,
|
| 367 |
"metadata": {},
|
| 368 |
"outputs": [],
|
| 369 |
"source": [
|
|
|
|
| 394 |
},
|
| 395 |
{
|
| 396 |
"cell_type": "code",
|
| 397 |
+
"execution_count": 16,
|
| 398 |
"metadata": {},
|
| 399 |
"outputs": [],
|
| 400 |
"source": [
|
|
|
|
| 431 |
},
|
| 432 |
{
|
| 433 |
"cell_type": "code",
|
| 434 |
+
"execution_count": 17,
|
| 435 |
"metadata": {},
|
| 436 |
"outputs": [],
|
| 437 |
"source": [
|
|
|
|
| 484 |
},
|
| 485 |
{
|
| 486 |
"cell_type": "code",
|
| 487 |
+
"execution_count": 18,
|
| 488 |
"metadata": {},
|
| 489 |
"outputs": [],
|
| 490 |
"source": [
|
|
|
|
| 493 |
},
|
| 494 |
{
|
| 495 |
"cell_type": "code",
|
| 496 |
+
"execution_count": 19,
|
| 497 |
"metadata": {},
|
| 498 |
"outputs": [],
|
| 499 |
"source": [
|
|
|
|
| 502 |
},
|
| 503 |
{
|
| 504 |
"cell_type": "code",
|
| 505 |
+
"execution_count": 20,
|
| 506 |
"metadata": {},
|
| 507 |
"outputs": [],
|
| 508 |
"source": [
|
|
|
|
| 511 |
},
|
| 512 |
{
|
| 513 |
"cell_type": "code",
|
| 514 |
+
"execution_count": 21,
|
| 515 |
"metadata": {},
|
| 516 |
"outputs": [],
|
| 517 |
"source": [
|
|
|
|
| 534 |
},
|
| 535 |
{
|
| 536 |
"cell_type": "code",
|
| 537 |
+
"execution_count": 22,
|
| 538 |
"metadata": {},
|
| 539 |
"outputs": [],
|
| 540 |
"source": [
|
|
|
|
| 543 |
},
|
| 544 |
{
|
| 545 |
"cell_type": "code",
|
| 546 |
+
"execution_count": 23,
|
| 547 |
"metadata": {},
|
| 548 |
"outputs": [],
|
| 549 |
"source": [
|
|
|
|
| 552 |
},
|
| 553 |
{
|
| 554 |
"cell_type": "code",
|
| 555 |
+
"execution_count": 24,
|
| 556 |
"metadata": {},
|
| 557 |
"outputs": [],
|
| 558 |
"source": [
|
|
|
|
| 568 |
},
|
| 569 |
{
|
| 570 |
"cell_type": "code",
|
| 571 |
+
"execution_count": 25,
|
| 572 |
"metadata": {},
|
| 573 |
"outputs": [],
|
| 574 |
"source": [
|
|
|
|
| 586 |
},
|
| 587 |
{
|
| 588 |
"cell_type": "code",
|
| 589 |
+
"execution_count": 26,
|
| 590 |
"metadata": {},
|
| 591 |
"outputs": [
|
| 592 |
{
|
|
|
|
| 596 |
"<Figure size 1600x350 with 2 Axes>"
|
| 597 |
]
|
| 598 |
},
|
| 599 |
+
"execution_count": 26,
|
| 600 |
"metadata": {},
|
| 601 |
"output_type": "execute_result"
|
| 602 |
}
|
|
|
|
| 621 |
},
|
| 622 |
{
|
| 623 |
"cell_type": "code",
|
| 624 |
+
"execution_count": 27,
|
| 625 |
"metadata": {},
|
| 626 |
"outputs": [],
|
| 627 |
"source": [
|
|
|
|
| 641 |
},
|
| 642 |
{
|
| 643 |
"cell_type": "code",
|
| 644 |
+
"execution_count": 28,
|
| 645 |
"metadata": {},
|
| 646 |
"outputs": [],
|
| 647 |
"source": [
|
|
|
|
| 650 |
},
|
| 651 |
{
|
| 652 |
"cell_type": "code",
|
| 653 |
+
"execution_count": 29,
|
| 654 |
"metadata": {},
|
| 655 |
"outputs": [],
|
| 656 |
"source": [
|
|
|
|
| 663 |
},
|
| 664 |
{
|
| 665 |
"cell_type": "code",
|
| 666 |
+
"execution_count": 30,
|
| 667 |
"metadata": {},
|
| 668 |
"outputs": [
|
| 669 |
{
|
|
|
|
| 710 |
"0 9.148477 18.487053 27.713882 27.880458"
|
| 711 |
]
|
| 712 |
},
|
| 713 |
+
"execution_count": 30,
|
| 714 |
"metadata": {},
|
| 715 |
"output_type": "execute_result"
|
| 716 |
}
|
notebooks/02_data_wrangling.ipynb
ADDED
|
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd\n",
|
| 10 |
+
"import numpy as np"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 2,
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [],
|
| 18 |
+
"source": [
|
| 19 |
+
"df_lluvia = pd.read_excel(\n",
|
| 20 |
+
" \"/Users/sebastianalejandrosarastizambonino/Documents/conferences/aws_community_day_2025/data/ambiente_quito/CO.xlsx\",\n",
|
| 21 |
+
" skiprows=0,\n",
|
| 22 |
+
")"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "markdown",
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"source": [
|
| 29 |
+
"Select useful raws"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": 3,
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"outputs": [],
|
| 37 |
+
"source": [
|
| 38 |
+
"df_lluvia = df_lluvia[1:]"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "markdown",
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"source": [
|
| 45 |
+
"Rename the dates"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "code",
|
| 50 |
+
"execution_count": 4,
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"outputs": [],
|
| 53 |
+
"source": [
|
| 54 |
+
"df_lluvia = df_lluvia.rename(columns={\"Unnamed: 0\": \"ds\"})"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "code",
|
| 59 |
+
"execution_count": 5,
|
| 60 |
+
"metadata": {},
|
| 61 |
+
"outputs": [],
|
| 62 |
+
"source": [
|
| 63 |
+
"df_lluvia[\"ds\"] = pd.to_datetime(df_lluvia[\"ds\"])"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"execution_count": 6,
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"outputs": [],
|
| 71 |
+
"source": [
|
| 72 |
+
"df_lluvia_melted = pd.melt(\n",
|
| 73 |
+
" df_lluvia, id_vars=[\"ds\"], var_name=\"station\", value_name=\"y\"\n",
|
| 74 |
+
")"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 7,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"df_lluvia_melted = df_lluvia_melted.dropna()"
|
| 84 |
+
]
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"cell_type": "markdown",
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"source": [
|
| 90 |
+
"Seleccionar los lugares disponibles para la lluvia"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": 8,
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"outputs": [],
|
| 98 |
+
"source": [
|
| 99 |
+
"places_lluvia = df_lluvia_melted[\"station\"].unique()"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": 9,
|
| 105 |
+
"metadata": {},
|
| 106 |
+
"outputs": [
|
| 107 |
+
{
|
| 108 |
+
"name": "stdout",
|
| 109 |
+
"output_type": "stream",
|
| 110 |
+
"text": [
|
| 111 |
+
"['BELISARIO' 'CARAPUNGO' 'CENTRO' 'COTOCOLLAO' 'EL CAMAL' 'GUAMANI'\n",
|
| 112 |
+
" 'LOS CHILLOS' 'TUMBACO' 'CONDADO' 'TURUBAMBA']\n"
|
| 113 |
+
]
|
| 114 |
+
}
|
| 115 |
+
],
|
| 116 |
+
"source": [
|
| 117 |
+
"print(places_lluvia)"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "markdown",
|
| 122 |
+
"metadata": {},
|
| 123 |
+
"source": [
|
| 124 |
+
"See the min and max dates for the lluvia places"
|
| 125 |
+
]
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"cell_type": "code",
|
| 129 |
+
"execution_count": 10,
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"outputs": [],
|
| 132 |
+
"source": [
|
| 133 |
+
"stats_lluvia = df_lluvia_melted.groupby(\"station\").agg({\"ds\": [\"min\", \"max\"]})"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "code",
|
| 138 |
+
"execution_count": 11,
|
| 139 |
+
"metadata": {},
|
| 140 |
+
"outputs": [
|
| 141 |
+
{
|
| 142 |
+
"data": {
|
| 143 |
+
"text/html": [
|
| 144 |
+
"<div>\n",
|
| 145 |
+
"<style scoped>\n",
|
| 146 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 147 |
+
" vertical-align: middle;\n",
|
| 148 |
+
" }\n",
|
| 149 |
+
"\n",
|
| 150 |
+
" .dataframe tbody tr th {\n",
|
| 151 |
+
" vertical-align: top;\n",
|
| 152 |
+
" }\n",
|
| 153 |
+
"\n",
|
| 154 |
+
" .dataframe thead tr th {\n",
|
| 155 |
+
" text-align: left;\n",
|
| 156 |
+
" }\n",
|
| 157 |
+
"\n",
|
| 158 |
+
" .dataframe thead tr:last-of-type th {\n",
|
| 159 |
+
" text-align: right;\n",
|
| 160 |
+
" }\n",
|
| 161 |
+
"</style>\n",
|
| 162 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 163 |
+
" <thead>\n",
|
| 164 |
+
" <tr>\n",
|
| 165 |
+
" <th></th>\n",
|
| 166 |
+
" <th colspan=\"2\" halign=\"left\">ds</th>\n",
|
| 167 |
+
" </tr>\n",
|
| 168 |
+
" <tr>\n",
|
| 169 |
+
" <th></th>\n",
|
| 170 |
+
" <th>min</th>\n",
|
| 171 |
+
" <th>max</th>\n",
|
| 172 |
+
" </tr>\n",
|
| 173 |
+
" <tr>\n",
|
| 174 |
+
" <th>station</th>\n",
|
| 175 |
+
" <th></th>\n",
|
| 176 |
+
" <th></th>\n",
|
| 177 |
+
" </tr>\n",
|
| 178 |
+
" </thead>\n",
|
| 179 |
+
" <tbody>\n",
|
| 180 |
+
" <tr>\n",
|
| 181 |
+
" <th>BELISARIO</th>\n",
|
| 182 |
+
" <td>2004-01-01 00:00:00</td>\n",
|
| 183 |
+
" <td>2025-09-30 23:00:00</td>\n",
|
| 184 |
+
" </tr>\n",
|
| 185 |
+
" <tr>\n",
|
| 186 |
+
" <th>CARAPUNGO</th>\n",
|
| 187 |
+
" <td>2005-03-16 15:00:00</td>\n",
|
| 188 |
+
" <td>2025-09-30 23:00:00</td>\n",
|
| 189 |
+
" </tr>\n",
|
| 190 |
+
" <tr>\n",
|
| 191 |
+
" <th>CENTRO</th>\n",
|
| 192 |
+
" <td>2004-01-01 00:00:00</td>\n",
|
| 193 |
+
" <td>2025-09-30 23:00:00</td>\n",
|
| 194 |
+
" </tr>\n",
|
| 195 |
+
" <tr>\n",
|
| 196 |
+
" <th>CONDADO</th>\n",
|
| 197 |
+
" <td>2004-01-01 00:00:00</td>\n",
|
| 198 |
+
" <td>2005-02-21 09:00:00</td>\n",
|
| 199 |
+
" </tr>\n",
|
| 200 |
+
" <tr>\n",
|
| 201 |
+
" <th>COTOCOLLAO</th>\n",
|
| 202 |
+
" <td>2005-02-25 14:00:00</td>\n",
|
| 203 |
+
" <td>2025-09-30 23:00:00</td>\n",
|
| 204 |
+
" </tr>\n",
|
| 205 |
+
" <tr>\n",
|
| 206 |
+
" <th>EL CAMAL</th>\n",
|
| 207 |
+
" <td>2004-01-01 00:00:00</td>\n",
|
| 208 |
+
" <td>2025-09-30 23:00:00</td>\n",
|
| 209 |
+
" </tr>\n",
|
| 210 |
+
" <tr>\n",
|
| 211 |
+
" <th>GUAMANI</th>\n",
|
| 212 |
+
" <td>2005-04-19 15:00:00</td>\n",
|
| 213 |
+
" <td>2025-06-18 08:00:00</td>\n",
|
| 214 |
+
" </tr>\n",
|
| 215 |
+
" <tr>\n",
|
| 216 |
+
" <th>LOS CHILLOS</th>\n",
|
| 217 |
+
" <td>2014-01-21 00:00:00</td>\n",
|
| 218 |
+
" <td>2025-09-30 12:00:00</td>\n",
|
| 219 |
+
" </tr>\n",
|
| 220 |
+
" <tr>\n",
|
| 221 |
+
" <th>TUMBACO</th>\n",
|
| 222 |
+
" <td>2019-06-10 17:00:00</td>\n",
|
| 223 |
+
" <td>2025-09-28 07:00:00</td>\n",
|
| 224 |
+
" </tr>\n",
|
| 225 |
+
" <tr>\n",
|
| 226 |
+
" <th>TURUBAMBA</th>\n",
|
| 227 |
+
" <td>2004-01-01 00:00:00</td>\n",
|
| 228 |
+
" <td>2005-03-08 09:00:00</td>\n",
|
| 229 |
+
" </tr>\n",
|
| 230 |
+
" </tbody>\n",
|
| 231 |
+
"</table>\n",
|
| 232 |
+
"</div>"
|
| 233 |
+
],
|
| 234 |
+
"text/plain": [
|
| 235 |
+
" ds \n",
|
| 236 |
+
" min max\n",
|
| 237 |
+
"station \n",
|
| 238 |
+
"BELISARIO 2004-01-01 00:00:00 2025-09-30 23:00:00\n",
|
| 239 |
+
"CARAPUNGO 2005-03-16 15:00:00 2025-09-30 23:00:00\n",
|
| 240 |
+
"CENTRO 2004-01-01 00:00:00 2025-09-30 23:00:00\n",
|
| 241 |
+
"CONDADO 2004-01-01 00:00:00 2005-02-21 09:00:00\n",
|
| 242 |
+
"COTOCOLLAO 2005-02-25 14:00:00 2025-09-30 23:00:00\n",
|
| 243 |
+
"EL CAMAL 2004-01-01 00:00:00 2025-09-30 23:00:00\n",
|
| 244 |
+
"GUAMANI 2005-04-19 15:00:00 2025-06-18 08:00:00\n",
|
| 245 |
+
"LOS CHILLOS 2014-01-21 00:00:00 2025-09-30 12:00:00\n",
|
| 246 |
+
"TUMBACO 2019-06-10 17:00:00 2025-09-28 07:00:00\n",
|
| 247 |
+
"TURUBAMBA 2004-01-01 00:00:00 2005-03-08 09:00:00"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
"execution_count": 11,
|
| 251 |
+
"metadata": {},
|
| 252 |
+
"output_type": "execute_result"
|
| 253 |
+
}
|
| 254 |
+
],
|
| 255 |
+
"source": [
|
| 256 |
+
"stats_lluvia"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"cell_type": "code",
|
| 261 |
+
"execution_count": 12,
|
| 262 |
+
"metadata": {},
|
| 263 |
+
"outputs": [],
|
| 264 |
+
"source": [
|
| 265 |
+
"useful_places_lluvia = stats_lluvia[\n",
|
| 266 |
+
" stats_lluvia[(\"ds\", \"max\")] >= \"2025-09-28 07:00:00\"\n",
|
| 267 |
+
"].index"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": 13,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"df_lluvia_melted = df_lluvia_melted[\n",
|
| 277 |
+
" df_lluvia_melted[\"station\"].isin(useful_places_lluvia)\n",
|
| 278 |
+
"]"
|
| 279 |
+
]
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"cell_type": "code",
|
| 283 |
+
"execution_count": 14,
|
| 284 |
+
"metadata": {},
|
| 285 |
+
"outputs": [],
|
| 286 |
+
"source": [
|
| 287 |
+
"df_lluvia_melted[\"y\"] = df_lluvia_melted[\"y\"].apply(\n",
|
| 288 |
+
" lambda x: np.nan if x == \" \" else x\n",
|
| 289 |
+
")"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": 15,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [],
|
| 297 |
+
"source": [
|
| 298 |
+
"df_lluvia_melted[\"property\"] = \"co\""
|
| 299 |
+
]
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"cell_type": "markdown",
|
| 303 |
+
"metadata": {},
|
| 304 |
+
"source": [
|
| 305 |
+
"## PM 2.5"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "markdown",
|
| 310 |
+
"metadata": {},
|
| 311 |
+
"source": [
|
| 312 |
+
"Read the pm2.5 dataframe"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"cell_type": "code",
|
| 317 |
+
"execution_count": 16,
|
| 318 |
+
"metadata": {},
|
| 319 |
+
"outputs": [],
|
| 320 |
+
"source": [
|
| 321 |
+
"df_pm = pd.read_excel(\n",
|
| 322 |
+
" \"/Users/sebastianalejandrosarastizambonino/Documents/conferences/aws_community_day_2025/data/ambiente_quito/PM2.5.xlsx\"\n",
|
| 323 |
+
")"
|
| 324 |
+
]
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"cell_type": "code",
|
| 328 |
+
"execution_count": 17,
|
| 329 |
+
"metadata": {},
|
| 330 |
+
"outputs": [],
|
| 331 |
+
"source": [
|
| 332 |
+
"df_pm = df_pm[1:]"
|
| 333 |
+
]
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"cell_type": "code",
|
| 337 |
+
"execution_count": 18,
|
| 338 |
+
"metadata": {},
|
| 339 |
+
"outputs": [],
|
| 340 |
+
"source": [
|
| 341 |
+
"df_pm = df_pm.rename(columns={\"Unnamed: 0\": \"ds\"})"
|
| 342 |
+
]
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"cell_type": "code",
|
| 346 |
+
"execution_count": 19,
|
| 347 |
+
"metadata": {},
|
| 348 |
+
"outputs": [],
|
| 349 |
+
"source": [
|
| 350 |
+
"df_pm_melted = pd.melt(df_pm, id_vars=[\"ds\"], var_name=\"station\", value_name=\"y\")"
|
| 351 |
+
]
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"cell_type": "code",
|
| 355 |
+
"execution_count": 20,
|
| 356 |
+
"metadata": {},
|
| 357 |
+
"outputs": [],
|
| 358 |
+
"source": [
|
| 359 |
+
"df_pm_melted[\"y\"] = df_pm_melted[\"y\"].apply(\n",
|
| 360 |
+
" lambda x: np.nan if x == \" \" else x\n",
|
| 361 |
+
")"
|
| 362 |
+
]
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"cell_type": "code",
|
| 366 |
+
"execution_count": 21,
|
| 367 |
+
"metadata": {},
|
| 368 |
+
"outputs": [],
|
| 369 |
+
"source": [
|
| 370 |
+
"df_pm_melted = df_pm_melted.dropna()"
|
| 371 |
+
]
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"cell_type": "code",
|
| 375 |
+
"execution_count": 22,
|
| 376 |
+
"metadata": {},
|
| 377 |
+
"outputs": [],
|
| 378 |
+
"source": [
|
| 379 |
+
"places_pm = df_pm_melted[\"station\"].unique()"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"cell_type": "code",
|
| 384 |
+
"execution_count": 23,
|
| 385 |
+
"metadata": {},
|
| 386 |
+
"outputs": [
|
| 387 |
+
{
|
| 388 |
+
"name": "stdout",
|
| 389 |
+
"output_type": "stream",
|
| 390 |
+
"text": [
|
| 391 |
+
"['BELISARIO' 'CARAPUNGO' 'CENTRO' 'COTOCOLLAO' 'EL CAMAL' 'GUAMANI'\n",
|
| 392 |
+
" 'LOS CHILLOS' 'SAN ANTONIO' 'TUMBACO' 'TURUBAMBA']\n"
|
| 393 |
+
]
|
| 394 |
+
}
|
| 395 |
+
],
|
| 396 |
+
"source": [
|
| 397 |
+
"print(places_pm)"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "code",
|
| 402 |
+
"execution_count": 24,
|
| 403 |
+
"metadata": {},
|
| 404 |
+
"outputs": [],
|
| 405 |
+
"source": [
|
| 406 |
+
"df_pm_melted[\"ds\"] = pd.to_datetime(df_pm_melted[\"ds\"])"
|
| 407 |
+
]
|
| 408 |
+
},
|
| 409 |
+
{
|
| 410 |
+
"cell_type": "code",
|
| 411 |
+
"execution_count": 25,
|
| 412 |
+
"metadata": {},
|
| 413 |
+
"outputs": [],
|
| 414 |
+
"source": [
|
| 415 |
+
"metric_dates = df_pm_melted.groupby([\"station\"]).agg({\"ds\": [\"min\", \"max\"]})"
|
| 416 |
+
]
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"cell_type": "code",
|
| 420 |
+
"execution_count": 26,
|
| 421 |
+
"metadata": {},
|
| 422 |
+
"outputs": [
|
| 423 |
+
{
|
| 424 |
+
"data": {
|
| 425 |
+
"text/html": [
|
| 426 |
+
"<div>\n",
|
| 427 |
+
"<style scoped>\n",
|
| 428 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 429 |
+
" vertical-align: middle;\n",
|
| 430 |
+
" }\n",
|
| 431 |
+
"\n",
|
| 432 |
+
" .dataframe tbody tr th {\n",
|
| 433 |
+
" vertical-align: top;\n",
|
| 434 |
+
" }\n",
|
| 435 |
+
"\n",
|
| 436 |
+
" .dataframe thead tr th {\n",
|
| 437 |
+
" text-align: left;\n",
|
| 438 |
+
" }\n",
|
| 439 |
+
"\n",
|
| 440 |
+
" .dataframe thead tr:last-of-type th {\n",
|
| 441 |
+
" text-align: right;\n",
|
| 442 |
+
" }\n",
|
| 443 |
+
"</style>\n",
|
| 444 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 445 |
+
" <thead>\n",
|
| 446 |
+
" <tr>\n",
|
| 447 |
+
" <th></th>\n",
|
| 448 |
+
" <th colspan=\"2\" halign=\"left\">ds</th>\n",
|
| 449 |
+
" </tr>\n",
|
| 450 |
+
" <tr>\n",
|
| 451 |
+
" <th></th>\n",
|
| 452 |
+
" <th>min</th>\n",
|
| 453 |
+
" <th>max</th>\n",
|
| 454 |
+
" </tr>\n",
|
| 455 |
+
" <tr>\n",
|
| 456 |
+
" <th>station</th>\n",
|
| 457 |
+
" <th></th>\n",
|
| 458 |
+
" <th></th>\n",
|
| 459 |
+
" </tr>\n",
|
| 460 |
+
" </thead>\n",
|
| 461 |
+
" <tbody>\n",
|
| 462 |
+
" <tr>\n",
|
| 463 |
+
" <th>BELISARIO</th>\n",
|
| 464 |
+
" <td>2004-09-03 17:00:00</td>\n",
|
| 465 |
+
" <td>2025-08-31 23:00:00</td>\n",
|
| 466 |
+
" </tr>\n",
|
| 467 |
+
" <tr>\n",
|
| 468 |
+
" <th>CARAPUNGO</th>\n",
|
| 469 |
+
" <td>2005-03-16 00:00:00</td>\n",
|
| 470 |
+
" <td>2025-08-31 23:00:00</td>\n",
|
| 471 |
+
" </tr>\n",
|
| 472 |
+
" <tr>\n",
|
| 473 |
+
" <th>CENTRO</th>\n",
|
| 474 |
+
" <td>2004-08-26 15:00:00</td>\n",
|
| 475 |
+
" <td>2025-08-31 23:00:00</td>\n",
|
| 476 |
+
" </tr>\n",
|
| 477 |
+
" <tr>\n",
|
| 478 |
+
" <th>COTOCOLLAO</th>\n",
|
| 479 |
+
" <td>2005-02-25 10:00:00</td>\n",
|
| 480 |
+
" <td>2025-08-31 23:00:00</td>\n",
|
| 481 |
+
" </tr>\n",
|
| 482 |
+
" <tr>\n",
|
| 483 |
+
" <th>EL CAMAL</th>\n",
|
| 484 |
+
" <td>2004-08-26 17:00:00</td>\n",
|
| 485 |
+
" <td>2025-08-31 23:00:00</td>\n",
|
| 486 |
+
" </tr>\n",
|
| 487 |
+
" <tr>\n",
|
| 488 |
+
" <th>GUAMANI</th>\n",
|
| 489 |
+
" <td>2013-10-28 00:00:00</td>\n",
|
| 490 |
+
" <td>2025-06-18 08:00:00</td>\n",
|
| 491 |
+
" </tr>\n",
|
| 492 |
+
" <tr>\n",
|
| 493 |
+
" <th>LOS CHILLOS</th>\n",
|
| 494 |
+
" <td>2014-01-21 00:00:00</td>\n",
|
| 495 |
+
" <td>2025-03-31 14:00:00</td>\n",
|
| 496 |
+
" </tr>\n",
|
| 497 |
+
" <tr>\n",
|
| 498 |
+
" <th>SAN ANTONIO</th>\n",
|
| 499 |
+
" <td>2017-03-29 00:00:00</td>\n",
|
| 500 |
+
" <td>2025-08-31 23:00:00</td>\n",
|
| 501 |
+
" </tr>\n",
|
| 502 |
+
" <tr>\n",
|
| 503 |
+
" <th>TUMBACO</th>\n",
|
| 504 |
+
" <td>2017-03-07 13:00:00</td>\n",
|
| 505 |
+
" <td>2025-08-31 23:00:00</td>\n",
|
| 506 |
+
" </tr>\n",
|
| 507 |
+
" <tr>\n",
|
| 508 |
+
" <th>TURUBAMBA</th>\n",
|
| 509 |
+
" <td>2004-10-04 17:00:00</td>\n",
|
| 510 |
+
" <td>2005-03-08 09:00:00</td>\n",
|
| 511 |
+
" </tr>\n",
|
| 512 |
+
" </tbody>\n",
|
| 513 |
+
"</table>\n",
|
| 514 |
+
"</div>"
|
| 515 |
+
],
|
| 516 |
+
"text/plain": [
|
| 517 |
+
" ds \n",
|
| 518 |
+
" min max\n",
|
| 519 |
+
"station \n",
|
| 520 |
+
"BELISARIO 2004-09-03 17:00:00 2025-08-31 23:00:00\n",
|
| 521 |
+
"CARAPUNGO 2005-03-16 00:00:00 2025-08-31 23:00:00\n",
|
| 522 |
+
"CENTRO 2004-08-26 15:00:00 2025-08-31 23:00:00\n",
|
| 523 |
+
"COTOCOLLAO 2005-02-25 10:00:00 2025-08-31 23:00:00\n",
|
| 524 |
+
"EL CAMAL 2004-08-26 17:00:00 2025-08-31 23:00:00\n",
|
| 525 |
+
"GUAMANI 2013-10-28 00:00:00 2025-06-18 08:00:00\n",
|
| 526 |
+
"LOS CHILLOS 2014-01-21 00:00:00 2025-03-31 14:00:00\n",
|
| 527 |
+
"SAN ANTONIO 2017-03-29 00:00:00 2025-08-31 23:00:00\n",
|
| 528 |
+
"TUMBACO 2017-03-07 13:00:00 2025-08-31 23:00:00\n",
|
| 529 |
+
"TURUBAMBA 2004-10-04 17:00:00 2005-03-08 09:00:00"
|
| 530 |
+
]
|
| 531 |
+
},
|
| 532 |
+
"execution_count": 26,
|
| 533 |
+
"metadata": {},
|
| 534 |
+
"output_type": "execute_result"
|
| 535 |
+
}
|
| 536 |
+
],
|
| 537 |
+
"source": [
|
| 538 |
+
"metric_dates"
|
| 539 |
+
]
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"cell_type": "code",
|
| 543 |
+
"execution_count": 27,
|
| 544 |
+
"metadata": {},
|
| 545 |
+
"outputs": [],
|
| 546 |
+
"source": [
|
| 547 |
+
"useful_places_pm = metric_dates[\n",
|
| 548 |
+
" metric_dates[(\"ds\", \"max\")] == \"2025-08-31 23:00:00\"\n",
|
| 549 |
+
"].index"
|
| 550 |
+
]
|
| 551 |
+
},
|
| 552 |
+
{
|
| 553 |
+
"cell_type": "code",
|
| 554 |
+
"execution_count": 28,
|
| 555 |
+
"metadata": {},
|
| 556 |
+
"outputs": [],
|
| 557 |
+
"source": [
|
| 558 |
+
"df_pm_melted = df_pm_melted[df_pm_melted[\"station\"].isin(useful_places_pm)]"
|
| 559 |
+
]
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"cell_type": "code",
|
| 563 |
+
"execution_count": 29,
|
| 564 |
+
"metadata": {},
|
| 565 |
+
"outputs": [],
|
| 566 |
+
"source": [
|
| 567 |
+
"df_pm_melted[\"property\"] = \"pm-2.5\""
|
| 568 |
+
]
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"cell_type": "markdown",
|
| 572 |
+
"metadata": {},
|
| 573 |
+
"source": [
|
| 574 |
+
"## Temperature"
|
| 575 |
+
]
|
| 576 |
+
},
|
| 577 |
+
{
|
| 578 |
+
"cell_type": "code",
|
| 579 |
+
"execution_count": 30,
|
| 580 |
+
"metadata": {},
|
| 581 |
+
"outputs": [],
|
| 582 |
+
"source": [
|
| 583 |
+
"df_temp = pd.read_excel(\n",
|
| 584 |
+
" \"/Users/sebastianalejandrosarastizambonino/Documents/conferences/aws_community_day_2025/data/ambiente_quito/TMP.xlsx\"\n",
|
| 585 |
+
")"
|
| 586 |
+
]
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"cell_type": "code",
|
| 590 |
+
"execution_count": 31,
|
| 591 |
+
"metadata": {},
|
| 592 |
+
"outputs": [],
|
| 593 |
+
"source": [
|
| 594 |
+
"df_temp = df_temp[1:]"
|
| 595 |
+
]
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"cell_type": "code",
|
| 599 |
+
"execution_count": 32,
|
| 600 |
+
"metadata": {},
|
| 601 |
+
"outputs": [],
|
| 602 |
+
"source": [
|
| 603 |
+
"df_temp = df_temp.rename(columns={\"Unnamed: 0\": \"ds\"})"
|
| 604 |
+
]
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"cell_type": "code",
|
| 608 |
+
"execution_count": 33,
|
| 609 |
+
"metadata": {},
|
| 610 |
+
"outputs": [],
|
| 611 |
+
"source": [
|
| 612 |
+
"df_temp_melted = pd.melt(df_temp, id_vars=[\"ds\"], var_name=\"station\", value_name=\"y\")"
|
| 613 |
+
]
|
| 614 |
+
},
|
| 615 |
+
{
|
| 616 |
+
"cell_type": "code",
|
| 617 |
+
"execution_count": 34,
|
| 618 |
+
"metadata": {},
|
| 619 |
+
"outputs": [],
|
| 620 |
+
"source": [
|
| 621 |
+
"df_temp_melted = df_temp_melted.dropna()"
|
| 622 |
+
]
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"cell_type": "code",
|
| 626 |
+
"execution_count": 35,
|
| 627 |
+
"metadata": {},
|
| 628 |
+
"outputs": [],
|
| 629 |
+
"source": [
|
| 630 |
+
"df_temp_melted[\"ds\"] = pd.to_datetime(df_temp_melted[\"ds\"])"
|
| 631 |
+
]
|
| 632 |
+
},
|
| 633 |
+
{
|
| 634 |
+
"cell_type": "code",
|
| 635 |
+
"execution_count": 36,
|
| 636 |
+
"metadata": {},
|
| 637 |
+
"outputs": [],
|
| 638 |
+
"source": [
|
| 639 |
+
"metrics_temp = df_temp_melted.groupby([\"station\"]).agg({\"ds\": [\"min\", \"max\"]})"
|
| 640 |
+
]
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"cell_type": "code",
|
| 644 |
+
"execution_count": 37,
|
| 645 |
+
"metadata": {},
|
| 646 |
+
"outputs": [],
|
| 647 |
+
"source": [
|
| 648 |
+
"useful_places_temp = metrics_temp[\n",
|
| 649 |
+
" metrics_temp[(\"ds\", \"max\")] == pd.to_datetime(\"2025-09-30 23:00:00\")\n",
|
| 650 |
+
"].index"
|
| 651 |
+
]
|
| 652 |
+
},
|
| 653 |
+
{
|
| 654 |
+
"cell_type": "code",
|
| 655 |
+
"execution_count": 38,
|
| 656 |
+
"metadata": {},
|
| 657 |
+
"outputs": [],
|
| 658 |
+
"source": [
|
| 659 |
+
"df_temp_melted = df_temp_melted[df_temp_melted[\"station\"].isin(useful_places_temp)]"
|
| 660 |
+
]
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"cell_type": "code",
|
| 664 |
+
"execution_count": 39,
|
| 665 |
+
"metadata": {},
|
| 666 |
+
"outputs": [],
|
| 667 |
+
"source": [
|
| 668 |
+
"df_temp_melted[\"property\"] = \"temperature\""
|
| 669 |
+
]
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"cell_type": "markdown",
|
| 673 |
+
"metadata": {},
|
| 674 |
+
"source": [
|
| 675 |
+
"Concat to have a single dataframe"
|
| 676 |
+
]
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"cell_type": "code",
|
| 680 |
+
"execution_count": 40,
|
| 681 |
+
"metadata": {},
|
| 682 |
+
"outputs": [],
|
| 683 |
+
"source": [
|
| 684 |
+
"df_final = pd.concat([df_lluvia_melted, df_pm_melted, df_temp_melted])"
|
| 685 |
+
]
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"cell_type": "code",
|
| 689 |
+
"execution_count": 41,
|
| 690 |
+
"metadata": {},
|
| 691 |
+
"outputs": [],
|
| 692 |
+
"source": [
|
| 693 |
+
"df_final[\"station\"] = df_final[\"station\"].apply(lambda x: x.upper())"
|
| 694 |
+
]
|
| 695 |
+
},
|
| 696 |
+
{
|
| 697 |
+
"cell_type": "code",
|
| 698 |
+
"execution_count": 42,
|
| 699 |
+
"metadata": {},
|
| 700 |
+
"outputs": [],
|
| 701 |
+
"source": [
|
| 702 |
+
"df_final = df_final[df_final[\"ds\"] <= pd.to_datetime(\"2025-08-31 23:00:00\")]"
|
| 703 |
+
]
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"cell_type": "code",
|
| 707 |
+
"execution_count": 43,
|
| 708 |
+
"metadata": {},
|
| 709 |
+
"outputs": [],
|
| 710 |
+
"source": [
|
| 711 |
+
"df_final[\"station\"] = df_final[\"station\"].apply(\n",
|
| 712 |
+
" lambda x: \"SAN ANTONIO\" if x == \"SANANTONIO\" else x\n",
|
| 713 |
+
")\n",
|
| 714 |
+
"\n",
|
| 715 |
+
"df_final[\"station\"] = df_final[\"station\"].apply(\n",
|
| 716 |
+
" lambda x: \"EL CAMAL\" if x == \"ELCAMAL\" else x\n",
|
| 717 |
+
")"
|
| 718 |
+
]
|
| 719 |
+
},
|
| 720 |
+
{
|
| 721 |
+
"cell_type": "code",
|
| 722 |
+
"execution_count": 44,
|
| 723 |
+
"metadata": {},
|
| 724 |
+
"outputs": [
|
| 725 |
+
{
|
| 726 |
+
"data": {
|
| 727 |
+
"text/plain": [
|
| 728 |
+
"array(['BELISARIO', 'CARAPUNGO', 'CENTRO', 'COTOCOLLAO', 'EL CAMAL',\n",
|
| 729 |
+
" 'LOS CHILLOS', 'TUMBACO', 'SAN ANTONIO'], dtype=object)"
|
| 730 |
+
]
|
| 731 |
+
},
|
| 732 |
+
"execution_count": 44,
|
| 733 |
+
"metadata": {},
|
| 734 |
+
"output_type": "execute_result"
|
| 735 |
+
}
|
| 736 |
+
],
|
| 737 |
+
"source": [
|
| 738 |
+
"df_final[\"station\"].unique()"
|
| 739 |
+
]
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"cell_type": "code",
|
| 743 |
+
"execution_count": 45,
|
| 744 |
+
"metadata": {},
|
| 745 |
+
"outputs": [],
|
| 746 |
+
"source": [
|
| 747 |
+
"FINAL_PATH = \"/Users/sebastianalejandrosarastizambonino/Documents/conferences/aws_community_day_2025/data\"\n",
|
| 748 |
+
"df_final.to_parquet(f\"{FINAL_PATH}/datos_ambiente_quito.parquet\")"
|
| 749 |
+
]
|
| 750 |
+
}
|
| 751 |
+
],
|
| 752 |
+
"metadata": {
|
| 753 |
+
"kernelspec": {
|
| 754 |
+
"display_name": "aws_conf",
|
| 755 |
+
"language": "python",
|
| 756 |
+
"name": "python3"
|
| 757 |
+
},
|
| 758 |
+
"language_info": {
|
| 759 |
+
"codemirror_mode": {
|
| 760 |
+
"name": "ipython",
|
| 761 |
+
"version": 3
|
| 762 |
+
},
|
| 763 |
+
"file_extension": ".py",
|
| 764 |
+
"mimetype": "text/x-python",
|
| 765 |
+
"name": "python",
|
| 766 |
+
"nbconvert_exporter": "python",
|
| 767 |
+
"pygments_lexer": "ipython3",
|
| 768 |
+
"version": "3.11.13"
|
| 769 |
+
}
|
| 770 |
+
},
|
| 771 |
+
"nbformat": 4,
|
| 772 |
+
"nbformat_minor": 2
|
| 773 |
+
}
|
notebooks/03_data_verification.ipynb
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 2,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"df = pd.read_parquet(\n",
|
| 19 |
+
" \"/Users/sebastianalejandrosarastizambonino/Documents/conferences/aws_community_day_2025/data/datos_ambiente_quito.parquet\"\n",
|
| 20 |
+
")"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": 4,
|
| 26 |
+
"metadata": {},
|
| 27 |
+
"outputs": [
|
| 28 |
+
{
|
| 29 |
+
"data": {
|
| 30 |
+
"text/html": [
|
| 31 |
+
"<div>\n",
|
| 32 |
+
"<style scoped>\n",
|
| 33 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 34 |
+
" vertical-align: middle;\n",
|
| 35 |
+
" }\n",
|
| 36 |
+
"\n",
|
| 37 |
+
" .dataframe tbody tr th {\n",
|
| 38 |
+
" vertical-align: top;\n",
|
| 39 |
+
" }\n",
|
| 40 |
+
"\n",
|
| 41 |
+
" .dataframe thead th {\n",
|
| 42 |
+
" text-align: right;\n",
|
| 43 |
+
" }\n",
|
| 44 |
+
"</style>\n",
|
| 45 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 46 |
+
" <thead>\n",
|
| 47 |
+
" <tr style=\"text-align: right;\">\n",
|
| 48 |
+
" <th></th>\n",
|
| 49 |
+
" <th>ds</th>\n",
|
| 50 |
+
" <th>station</th>\n",
|
| 51 |
+
" <th>y</th>\n",
|
| 52 |
+
" <th>property</th>\n",
|
| 53 |
+
" </tr>\n",
|
| 54 |
+
" </thead>\n",
|
| 55 |
+
" <tbody>\n",
|
| 56 |
+
" <tr>\n",
|
| 57 |
+
" <th>0</th>\n",
|
| 58 |
+
" <td>2004-01-01 00:00:00</td>\n",
|
| 59 |
+
" <td>BELISARIO</td>\n",
|
| 60 |
+
" <td>7.42</td>\n",
|
| 61 |
+
" <td>co</td>\n",
|
| 62 |
+
" </tr>\n",
|
| 63 |
+
" <tr>\n",
|
| 64 |
+
" <th>1</th>\n",
|
| 65 |
+
" <td>2004-01-01 01:00:00</td>\n",
|
| 66 |
+
" <td>BELISARIO</td>\n",
|
| 67 |
+
" <td>7.96</td>\n",
|
| 68 |
+
" <td>co</td>\n",
|
| 69 |
+
" </tr>\n",
|
| 70 |
+
" <tr>\n",
|
| 71 |
+
" <th>2</th>\n",
|
| 72 |
+
" <td>2004-01-01 02:00:00</td>\n",
|
| 73 |
+
" <td>BELISARIO</td>\n",
|
| 74 |
+
" <td>8.42</td>\n",
|
| 75 |
+
" <td>co</td>\n",
|
| 76 |
+
" </tr>\n",
|
| 77 |
+
" <tr>\n",
|
| 78 |
+
" <th>3</th>\n",
|
| 79 |
+
" <td>2004-01-01 03:00:00</td>\n",
|
| 80 |
+
" <td>BELISARIO</td>\n",
|
| 81 |
+
" <td>9.06</td>\n",
|
| 82 |
+
" <td>co</td>\n",
|
| 83 |
+
" </tr>\n",
|
| 84 |
+
" <tr>\n",
|
| 85 |
+
" <th>4</th>\n",
|
| 86 |
+
" <td>2004-01-01 04:00:00</td>\n",
|
| 87 |
+
" <td>BELISARIO</td>\n",
|
| 88 |
+
" <td>6.57</td>\n",
|
| 89 |
+
" <td>co</td>\n",
|
| 90 |
+
" </tr>\n",
|
| 91 |
+
" <tr>\n",
|
| 92 |
+
" <th>...</th>\n",
|
| 93 |
+
" <td>...</td>\n",
|
| 94 |
+
" <td>...</td>\n",
|
| 95 |
+
" <td>...</td>\n",
|
| 96 |
+
" <td>...</td>\n",
|
| 97 |
+
" </tr>\n",
|
| 98 |
+
" <tr>\n",
|
| 99 |
+
" <th>1524523</th>\n",
|
| 100 |
+
" <td>2025-08-31 19:00:00</td>\n",
|
| 101 |
+
" <td>SAN ANTONIO</td>\n",
|
| 102 |
+
" <td>12.78</td>\n",
|
| 103 |
+
" <td>Temperature</td>\n",
|
| 104 |
+
" </tr>\n",
|
| 105 |
+
" <tr>\n",
|
| 106 |
+
" <th>1524524</th>\n",
|
| 107 |
+
" <td>2025-08-31 20:00:00</td>\n",
|
| 108 |
+
" <td>SAN ANTONIO</td>\n",
|
| 109 |
+
" <td>12.28</td>\n",
|
| 110 |
+
" <td>Temperature</td>\n",
|
| 111 |
+
" </tr>\n",
|
| 112 |
+
" <tr>\n",
|
| 113 |
+
" <th>1524525</th>\n",
|
| 114 |
+
" <td>2025-08-31 21:00:00</td>\n",
|
| 115 |
+
" <td>SAN ANTONIO</td>\n",
|
| 116 |
+
" <td>12.21</td>\n",
|
| 117 |
+
" <td>Temperature</td>\n",
|
| 118 |
+
" </tr>\n",
|
| 119 |
+
" <tr>\n",
|
| 120 |
+
" <th>1524526</th>\n",
|
| 121 |
+
" <td>2025-08-31 22:00:00</td>\n",
|
| 122 |
+
" <td>SAN ANTONIO</td>\n",
|
| 123 |
+
" <td>12.35</td>\n",
|
| 124 |
+
" <td>Temperature</td>\n",
|
| 125 |
+
" </tr>\n",
|
| 126 |
+
" <tr>\n",
|
| 127 |
+
" <th>1524527</th>\n",
|
| 128 |
+
" <td>2025-08-31 23:00:00</td>\n",
|
| 129 |
+
" <td>SAN ANTONIO</td>\n",
|
| 130 |
+
" <td>12.22</td>\n",
|
| 131 |
+
" <td>Temperature</td>\n",
|
| 132 |
+
" </tr>\n",
|
| 133 |
+
" </tbody>\n",
|
| 134 |
+
"</table>\n",
|
| 135 |
+
"<p>2828207 rows × 4 columns</p>\n",
|
| 136 |
+
"</div>"
|
| 137 |
+
],
|
| 138 |
+
"text/plain": [
|
| 139 |
+
" ds station y property\n",
|
| 140 |
+
"0 2004-01-01 00:00:00 BELISARIO 7.42 co\n",
|
| 141 |
+
"1 2004-01-01 01:00:00 BELISARIO 7.96 co\n",
|
| 142 |
+
"2 2004-01-01 02:00:00 BELISARIO 8.42 co\n",
|
| 143 |
+
"3 2004-01-01 03:00:00 BELISARIO 9.06 co\n",
|
| 144 |
+
"4 2004-01-01 04:00:00 BELISARIO 6.57 co\n",
|
| 145 |
+
"... ... ... ... ...\n",
|
| 146 |
+
"1524523 2025-08-31 19:00:00 SAN ANTONIO 12.78 Temperature\n",
|
| 147 |
+
"1524524 2025-08-31 20:00:00 SAN ANTONIO 12.28 Temperature\n",
|
| 148 |
+
"1524525 2025-08-31 21:00:00 SAN ANTONIO 12.21 Temperature\n",
|
| 149 |
+
"1524526 2025-08-31 22:00:00 SAN ANTONIO 12.35 Temperature\n",
|
| 150 |
+
"1524527 2025-08-31 23:00:00 SAN ANTONIO 12.22 Temperature\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"[2828207 rows x 4 columns]"
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
"execution_count": 4,
|
| 156 |
+
"metadata": {},
|
| 157 |
+
"output_type": "execute_result"
|
| 158 |
+
}
|
| 159 |
+
],
|
| 160 |
+
"source": [
|
| 161 |
+
"df"
|
| 162 |
+
]
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"cell_type": "code",
|
| 166 |
+
"execution_count": null,
|
| 167 |
+
"metadata": {},
|
| 168 |
+
"outputs": [],
|
| 169 |
+
"source": []
|
| 170 |
+
}
|
| 171 |
+
],
|
| 172 |
+
"metadata": {
|
| 173 |
+
"kernelspec": {
|
| 174 |
+
"display_name": "aws_conf",
|
| 175 |
+
"language": "python",
|
| 176 |
+
"name": "python3"
|
| 177 |
+
},
|
| 178 |
+
"language_info": {
|
| 179 |
+
"codemirror_mode": {
|
| 180 |
+
"name": "ipython",
|
| 181 |
+
"version": 3
|
| 182 |
+
},
|
| 183 |
+
"file_extension": ".py",
|
| 184 |
+
"mimetype": "text/x-python",
|
| 185 |
+
"name": "python",
|
| 186 |
+
"nbconvert_exporter": "python",
|
| 187 |
+
"pygments_lexer": "ipython3",
|
| 188 |
+
"version": "3.11.13"
|
| 189 |
+
}
|
| 190 |
+
},
|
| 191 |
+
"nbformat": 4,
|
| 192 |
+
"nbformat_minor": 2
|
| 193 |
+
}
|
src/chronos_conference/adapters/filter_ts.py
CHANGED
|
@@ -2,9 +2,26 @@ import pandas as pd
|
|
| 2 |
|
| 3 |
|
| 4 |
def filter_ts(
|
| 5 |
-
df: pd.DataFrame,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
) -> pd.DataFrame:
|
| 7 |
df = df.copy()
|
| 8 |
if pd.api.types.is_datetime64_any_dtype(df[date_col]) is False:
|
| 9 |
df[date_col] = pd.to_datetime(df[date_col])
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
def filter_ts(
|
| 5 |
+
df: pd.DataFrame,
|
| 6 |
+
date_col: str,
|
| 7 |
+
min_date: str,
|
| 8 |
+
max_date: str,
|
| 9 |
+
city_col: str,
|
| 10 |
+
city_choice: list,
|
| 11 |
+
property_col: str,
|
| 12 |
+
property_choice: list,
|
| 13 |
) -> pd.DataFrame:
|
| 14 |
df = df.copy()
|
| 15 |
if pd.api.types.is_datetime64_any_dtype(df[date_col]) is False:
|
| 16 |
df[date_col] = pd.to_datetime(df[date_col])
|
| 17 |
+
df = df[(df[date_col] >= min_date) & (df[date_col] <= max_date)]
|
| 18 |
+
if isinstance(property_choice, str):
|
| 19 |
+
property_choice = [property_choice]
|
| 20 |
+
df_final = df[
|
| 21 |
+
(df[city_col] == city_choice) & (df[property_col].isin(property_choice))
|
| 22 |
+
]
|
| 23 |
+
return df_final
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_properties(df: pd.DataFrame, city_col: str, property_given: str) -> list:
|
| 27 |
+
return df[df[city_col] == property_given]["property"].unique().tolist()
|
src/chronos_conference/adapters/model_instance.py
CHANGED
|
@@ -45,7 +45,6 @@ class ChronosForecaster(ForecastingBaseModel):
|
|
| 45 |
results = results.rename(
|
| 46 |
columns={
|
| 47 |
"mean": "AWSChronosForecast",
|
| 48 |
-
"item_id": "unique_id",
|
| 49 |
"timestamp": "ds",
|
| 50 |
}
|
| 51 |
)
|
|
|
|
| 45 |
results = results.rename(
|
| 46 |
columns={
|
| 47 |
"mean": "AWSChronosForecast",
|
|
|
|
| 48 |
"timestamp": "ds",
|
| 49 |
}
|
| 50 |
)
|
src/chronos_conference/adapters/ts_plot.py
CHANGED
|
@@ -1,16 +1,77 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
def get_plot(df_story: pd.DataFrame, df_pred: pd.DataFrame):
|
| 6 |
-
if pd.api.types.is_datetime64_any_dtype(df_story[
|
| 7 |
-
df_story[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
if pd.api.types.is_datetime64_any_dtype(df_pred["ds"])
|
| 10 |
df_pred["ds"] = pd.to_datetime(df_pred["ds"])
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
)
|
|
|
|
| 16 |
return fig
|
|
|
|
| 1 |
+
# ruff: noqa: F403, F405
|
| 2 |
+
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
from plotly.subplots import make_subplots
|
| 5 |
import pandas as pd
|
| 6 |
+
from chronos_conference.settings import *
|
| 7 |
|
| 8 |
|
| 9 |
def get_plot(df_story: pd.DataFrame, df_pred: pd.DataFrame):
|
| 10 |
+
if not pd.api.types.is_datetime64_any_dtype(df_story[HISTORICAL_DATE_COLUMN]):
|
| 11 |
+
df_story[HISTORICAL_DATE_COLUMN] = pd.to_datetime(
|
| 12 |
+
df_story[HISTORICAL_DATE_COLUMN]
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
df_story = df_story.rename(
|
| 16 |
+
columns={
|
| 17 |
+
HISTORICAL_DATE_COLUMN: "datetime",
|
| 18 |
+
HISTORICAL_TARGET_COLUMN: "value",
|
| 19 |
+
HISTORICAL_ITEM_COLUMN: "item_id",
|
| 20 |
+
}
|
| 21 |
+
)
|
| 22 |
|
| 23 |
+
if not pd.api.types.is_datetime64_any_dtype(df_pred["ds"]):
|
| 24 |
df_pred["ds"] = pd.to_datetime(df_pred["ds"])
|
| 25 |
|
| 26 |
+
item_ids = df_story["item_id"].unique()
|
| 27 |
+
number_columns = len(item_ids)
|
| 28 |
+
|
| 29 |
+
subplot_titles = [
|
| 30 |
+
f"{item}<br><span style='font-size:10px;color:gray;'>Unidad: {UNITS_MEASURED[item]} | "
|
| 31 |
+
f"Límite máx: {MAX_SAFETY_LIMITS[item]}</span>"
|
| 32 |
+
for item in item_ids
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
fig = make_subplots(rows=1, cols=number_columns, subplot_titles=subplot_titles)
|
| 36 |
+
|
| 37 |
+
for idx, value in enumerate(item_ids):
|
| 38 |
+
df_story_subset = df_story[df_story["item_id"] == value]
|
| 39 |
+
df_pred_subset = df_pred[df_pred["item_id"] == value]
|
| 40 |
+
|
| 41 |
+
show_legend = idx == 0
|
| 42 |
+
|
| 43 |
+
fig.add_trace(
|
| 44 |
+
go.Scatter(
|
| 45 |
+
x=df_story_subset["datetime"],
|
| 46 |
+
y=df_story_subset["value"],
|
| 47 |
+
mode="lines",
|
| 48 |
+
name="Histórico",
|
| 49 |
+
line=dict(color="blue", width=2),
|
| 50 |
+
showlegend=show_legend,
|
| 51 |
+
),
|
| 52 |
+
row=1,
|
| 53 |
+
col=idx + 1,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
fig.add_trace(
|
| 57 |
+
go.Scatter(
|
| 58 |
+
x=df_pred_subset["ds"],
|
| 59 |
+
y=df_pred_subset["AWSChronosForecast"],
|
| 60 |
+
mode="lines+markers",
|
| 61 |
+
name="Predicción",
|
| 62 |
+
line=dict(color="orange", dash="dash"),
|
| 63 |
+
marker=dict(symbol="x", size=8, color="orange"),
|
| 64 |
+
showlegend=show_legend,
|
| 65 |
+
),
|
| 66 |
+
row=1,
|
| 67 |
+
col=idx + 1,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
fig.update_layout(
|
| 71 |
+
showlegend=True,
|
| 72 |
+
height=400,
|
| 73 |
+
width=300 * number_columns,
|
| 74 |
+
title_text="Serie histórica y predicción por ítem",
|
| 75 |
)
|
| 76 |
+
|
| 77 |
return fig
|
src/chronos_conference/service_layer/main.py
CHANGED
|
@@ -4,11 +4,12 @@ import streamlit as st
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
from chronos_conference.domain.inference import get_forecast
|
| 7 |
-
from chronos_conference.adapters.filter_ts import filter_ts
|
| 8 |
from chronos_conference.adapters.model_instance import ChronosForecaster
|
| 9 |
from chronos_conference.adapters.ts_plot import get_plot
|
| 10 |
from chronos_conference.settings import *
|
| 11 |
|
|
|
|
| 12 |
st.title("AWS Community Day Ecuador 2025")
|
| 13 |
st.header(
|
| 14 |
"Conferencia: Aprendiendo el Lenguaje de las series de tiempo con AWS Chronos Bolt"
|
|
@@ -22,9 +23,9 @@ datos abiertos obtenidos del INAMHI.
|
|
| 22 |
"""
|
| 23 |
)
|
| 24 |
|
| 25 |
-
df = pd.
|
| 26 |
|
| 27 |
-
col1, col2
|
| 28 |
|
| 29 |
with col1:
|
| 30 |
min_date = st.date_input("Fecha mínima", value=MIN_PRED_DATE)
|
|
@@ -32,7 +33,29 @@ with col1:
|
|
| 32 |
with col2:
|
| 33 |
max_date = st.date_input("Fecha máxima", value=MAX_PRED_DATE)
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
n_steps = st.number_input(
|
| 37 |
"Número de pasos a predecir",
|
| 38 |
min_value=MIN_PRED_DATE_LIMIT,
|
|
@@ -40,6 +63,9 @@ with col3:
|
|
| 40 |
value=N_PRED_STEPS,
|
| 41 |
)
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
execution_button = st.button("Ejecutar modelo")
|
| 44 |
|
| 45 |
if not execution_button:
|
|
@@ -51,6 +77,10 @@ with st.spinner("Filtrando datos..."):
|
|
| 51 |
date_col=HISTORICAL_DATE_COLUMN,
|
| 52 |
min_date=str(min_date),
|
| 53 |
max_date=str(max_date),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
model = ChronosForecaster(freq=FREQUENCY)
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
from chronos_conference.domain.inference import get_forecast
|
| 7 |
+
from chronos_conference.adapters.filter_ts import filter_ts, get_properties
|
| 8 |
from chronos_conference.adapters.model_instance import ChronosForecaster
|
| 9 |
from chronos_conference.adapters.ts_plot import get_plot
|
| 10 |
from chronos_conference.settings import *
|
| 11 |
|
| 12 |
+
|
| 13 |
st.title("AWS Community Day Ecuador 2025")
|
| 14 |
st.header(
|
| 15 |
"Conferencia: Aprendiendo el Lenguaje de las series de tiempo con AWS Chronos Bolt"
|
|
|
|
| 23 |
"""
|
| 24 |
)
|
| 25 |
|
| 26 |
+
df = pd.read_parquet(PATH_DATA)
|
| 27 |
|
| 28 |
+
col1, col2 = st.columns(2)
|
| 29 |
|
| 30 |
with col1:
|
| 31 |
min_date = st.date_input("Fecha mínima", value=MIN_PRED_DATE)
|
|
|
|
| 33 |
with col2:
|
| 34 |
max_date = st.date_input("Fecha máxima", value=MAX_PRED_DATE)
|
| 35 |
|
| 36 |
+
|
| 37 |
+
city_choice = st.selectbox(
|
| 38 |
+
"Seleccione la zona de la ciudad a predecir", ZONES_TO_PREDICT
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
if not city_choice:
|
| 42 |
+
st.stop()
|
| 43 |
+
|
| 44 |
+
available_properties = get_properties(df, ZONE_COL, city_choice)
|
| 45 |
+
|
| 46 |
+
if not available_properties:
|
| 47 |
+
st.stop()
|
| 48 |
+
|
| 49 |
+
col1, col2 = st.columns(2)
|
| 50 |
+
|
| 51 |
+
with col1:
|
| 52 |
+
property_choice = st.pills(
|
| 53 |
+
"Seleccione la propiedad a predecir",
|
| 54 |
+
available_properties,
|
| 55 |
+
selection_mode="multi",
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
with col2:
|
| 59 |
n_steps = st.number_input(
|
| 60 |
"Número de pasos a predecir",
|
| 61 |
min_value=MIN_PRED_DATE_LIMIT,
|
|
|
|
| 63 |
value=N_PRED_STEPS,
|
| 64 |
)
|
| 65 |
|
| 66 |
+
if not property_choice:
|
| 67 |
+
st.stop()
|
| 68 |
+
|
| 69 |
execution_button = st.button("Ejecutar modelo")
|
| 70 |
|
| 71 |
if not execution_button:
|
|
|
|
| 77 |
date_col=HISTORICAL_DATE_COLUMN,
|
| 78 |
min_date=str(min_date),
|
| 79 |
max_date=str(max_date),
|
| 80 |
+
city_col=ZONE_COL,
|
| 81 |
+
city_choice=city_choice,
|
| 82 |
+
property_col=HISTORICAL_ITEM_COLUMN,
|
| 83 |
+
property_choice=property_choice,
|
| 84 |
)
|
| 85 |
|
| 86 |
model = ChronosForecaster(freq=FREQUENCY)
|
src/chronos_conference/settings.py
CHANGED
|
@@ -1,13 +1,35 @@
|
|
| 1 |
-
HISTORICAL_DATE_COLUMN = "
|
| 2 |
-
HISTORICAL_ITEM_COLUMN = "
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
-
PATH_DATA = "data/
|
|
|
|
| 6 |
|
| 7 |
-
FREQUENCY = "
|
| 8 |
|
| 9 |
-
MIN_PRED_DATE = "
|
| 10 |
-
MAX_PRED_DATE = "
|
| 11 |
N_PRED_STEPS = 48
|
| 12 |
MIN_PRED_DATE_LIMIT = 1
|
| 13 |
MAX_PRED_DATE_LIMIT = 128
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
HISTORICAL_DATE_COLUMN = "ds"
|
| 2 |
+
HISTORICAL_ITEM_COLUMN = "property"
|
| 3 |
+
ZONE_COL = "station"
|
| 4 |
+
HISTORICAL_TARGET_COLUMN = "y"
|
| 5 |
|
| 6 |
+
PATH_DATA = "data/datos_ambiente_quito.parquet"
|
| 7 |
+
# PATH_DATA = "/Users/sebastianalejandrosarastizambonino/Documents/conferences/aws_community_day_2025/data/datos_ambiente_quito.parquet"
|
| 8 |
|
| 9 |
+
FREQUENCY = "h"
|
| 10 |
|
| 11 |
+
MIN_PRED_DATE = "2025-08-29 23:00:00"
|
| 12 |
+
MAX_PRED_DATE = "2025-08-31 23:00:00"
|
| 13 |
N_PRED_STEPS = 48
|
| 14 |
MIN_PRED_DATE_LIMIT = 1
|
| 15 |
MAX_PRED_DATE_LIMIT = 128
|
| 16 |
+
|
| 17 |
+
PROPERTIES_TO_PREDICT = ["co", "pm-2.5", "temperature"]
|
| 18 |
+
ZONES_TO_PREDICT = [
|
| 19 |
+
"BELISARIO",
|
| 20 |
+
"CARAPUNGO",
|
| 21 |
+
"CENTRO",
|
| 22 |
+
"COTOCOLLAO",
|
| 23 |
+
"EL CAMAL",
|
| 24 |
+
"LOS CHILLOS",
|
| 25 |
+
"TUMBACO",
|
| 26 |
+
"SAN ANTONIO",
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
UNITS_MEASURED = {"co": "mg/m3", "pm-2.5": "µg/m3", "temperature": "°C"}
|
| 30 |
+
|
| 31 |
+
MAX_SAFETY_LIMITS = {
|
| 32 |
+
"pm-2.5": "35 µg/m3 daily", # reference: https://ww2.arb.ca.gov/es/resources/inhalable-particulate-matter-and-health
|
| 33 |
+
"co": "23 mg/m3", # reference: https://www.healthcouncil.nl/documents/2024/09/09/carbon-monoxide
|
| 34 |
+
"temperature": "N/A",
|
| 35 |
+
}
|