|
|
|
|
|
import gradio as gr |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from peft import PeftModel |
|
|
import torch |
|
|
|
|
|
base_model = "Qwen/Qwen2.5-7B" |
|
|
adapter_model = "muhtasham/tajik-qwen2.5-7b_finetuned" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
base_model, |
|
|
torch_dtype="auto", |
|
|
low_cpu_mem_usage=True, |
|
|
device_map="cpu" |
|
|
) |
|
|
|
|
|
|
|
|
model = PeftModel.from_pretrained(model, adapter_model) |
|
|
|
|
|
def chat(prompt): |
|
|
try: |
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
outputs = model.generate(**inputs, max_new_tokens=150, temperature=0.8, top_p=0.9) |
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
except Exception as e: |
|
|
return f"⚠️ Error: {str(e)}" |
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=chat, |
|
|
inputs=gr.Textbox(lines=3, label="Введите запрос (на таджикском, русском или английском)"), |
|
|
outputs="text", |
|
|
title="Tajik-Qwen2.5-7B Demo (LoRA)", |
|
|
description="Файнтюнинг модели Qwen2.5-7B на таджикском языке." |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|
|
|
|