Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub.keras_mixin import from_pretrained_keras
|
| 2 |
+
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from create_maxim_model import Model
|
| 8 |
+
from maxim.configs import MAXIM_CONFIGS
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
_MODEL = from_pretrained_keras("sayakpaul/S-2_enhancement_lol")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def mod_padding_symmetric(image, factor=64):
|
| 15 |
+
"""Padding the image to be divided by factor."""
|
| 16 |
+
height, width = image.shape[0], image.shape[1]
|
| 17 |
+
height_pad, width_pad = ((height + factor) // factor) * factor, (
|
| 18 |
+
(width + factor) // factor
|
| 19 |
+
) * factor
|
| 20 |
+
padh = height_pad - height if height % factor != 0 else 0
|
| 21 |
+
padw = width_pad - width if width % factor != 0 else 0
|
| 22 |
+
image = tf.pad(
|
| 23 |
+
image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT"
|
| 24 |
+
)
|
| 25 |
+
return image
|
| 26 |
+
|
| 27 |
+
def _convert_input_type_range(img):
|
| 28 |
+
"""Convert the type and range of the input image.
|
| 29 |
+
|
| 30 |
+
It converts the input image to np.float32 type and range of [0, 1].
|
| 31 |
+
It is mainly used for pre-processing the input image in colorspace
|
| 32 |
+
convertion functions such as rgb2ycbcr and ycbcr2rgb.
|
| 33 |
+
Args:
|
| 34 |
+
img (ndarray): The input image. It accepts:
|
| 35 |
+
1. np.uint8 type with range [0, 255];
|
| 36 |
+
2. np.float32 type with range [0, 1].
|
| 37 |
+
Returns:
|
| 38 |
+
(ndarray): The converted image with type of np.float32 and range of
|
| 39 |
+
[0, 1].
|
| 40 |
+
"""
|
| 41 |
+
img_type = img.dtype
|
| 42 |
+
img = img.astype(np.float32)
|
| 43 |
+
if img_type == np.float32:
|
| 44 |
+
pass
|
| 45 |
+
elif img_type == np.uint8:
|
| 46 |
+
img /= 255.0
|
| 47 |
+
else:
|
| 48 |
+
raise TypeError(
|
| 49 |
+
"The img type should be np.float32 or np.uint8, " f"but got {img_type}"
|
| 50 |
+
)
|
| 51 |
+
return img
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def _convert_output_type_range(img, dst_type):
|
| 55 |
+
"""Convert the type and range of the image according to dst_type.
|
| 56 |
+
|
| 57 |
+
It converts the image to desired type and range. If `dst_type` is np.uint8,
|
| 58 |
+
images will be converted to np.uint8 type with range [0, 255]. If
|
| 59 |
+
`dst_type` is np.float32, it converts the image to np.float32 type with
|
| 60 |
+
range [0, 1].
|
| 61 |
+
It is mainly used for post-processing images in colorspace convertion
|
| 62 |
+
functions such as rgb2ycbcr and ycbcr2rgb.
|
| 63 |
+
Args:
|
| 64 |
+
img (ndarray): The image to be converted with np.float32 type and
|
| 65 |
+
range [0, 255].
|
| 66 |
+
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
|
| 67 |
+
converts the image to np.uint8 type with range [0, 255]. If
|
| 68 |
+
dst_type is np.float32, it converts the image to np.float32 type
|
| 69 |
+
with range [0, 1].
|
| 70 |
+
Returns:
|
| 71 |
+
(ndarray): The converted image with desired type and range.
|
| 72 |
+
"""
|
| 73 |
+
if dst_type not in (np.uint8, np.float32):
|
| 74 |
+
raise TypeError(
|
| 75 |
+
"The dst_type should be np.float32 or np.uint8, " f"but got {dst_type}"
|
| 76 |
+
)
|
| 77 |
+
if dst_type == np.uint8:
|
| 78 |
+
img = img.round()
|
| 79 |
+
else:
|
| 80 |
+
img /= 255.0
|
| 81 |
+
|
| 82 |
+
return img.astype(dst_type)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def make_shape_even(image):
|
| 86 |
+
"""Pad the image to have even shapes."""
|
| 87 |
+
height, width = image.shape[0], image.shape[1]
|
| 88 |
+
padh = 1 if height % 2 != 0 else 0
|
| 89 |
+
padw = 1 if width % 2 != 0 else 0
|
| 90 |
+
image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT")
|
| 91 |
+
return image
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def process_image(image: Image):
|
| 95 |
+
input_img = np.asarray(image) / 255.0
|
| 96 |
+
height, width = input_img.shape[0], input_img.shape[1]
|
| 97 |
+
|
| 98 |
+
# Padding images to have even shapes
|
| 99 |
+
input_img = make_shape_even(input_img)
|
| 100 |
+
height_even, width_even = input_img.shape[0], input_img.shape[1]
|
| 101 |
+
|
| 102 |
+
# padding images to be multiplies of 64
|
| 103 |
+
input_img = mod_padding_symmetric(input_img, factor=64)
|
| 104 |
+
input_img = tf.expand_dims(input_img, axis=0)
|
| 105 |
+
return input_img, height_even, width_even
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def init_new_model(input_img):
|
| 109 |
+
configs = MAXIM_CONFIGS.get("S-2")
|
| 110 |
+
configs.update(
|
| 111 |
+
{
|
| 112 |
+
"variant": "S-2",
|
| 113 |
+
"dropout_rate": 0.0,
|
| 114 |
+
"num_outputs": 3,
|
| 115 |
+
"use_bias": True,
|
| 116 |
+
"num_supervision_scales": 3,
|
| 117 |
+
}
|
| 118 |
+
)
|
| 119 |
+
configs.update({"input_resolution": (input_img.shape[1], input_img.shape[2])})
|
| 120 |
+
new_model = Model(**configs)
|
| 121 |
+
new_model.set_weights(_MODEL.get_weights())
|
| 122 |
+
return new_model
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def infer(image):
|
| 126 |
+
preprocessed_image, height_even, width_even = process_image(image)
|
| 127 |
+
new_model = init_new_model(preprocessed_image)
|
| 128 |
+
|
| 129 |
+
preds = new_model.predict(preprocessed_image)
|
| 130 |
+
if isinstance(preds, list):
|
| 131 |
+
preds = preds[-1]
|
| 132 |
+
if isinstance(preds, list):
|
| 133 |
+
preds = preds[-1]
|
| 134 |
+
|
| 135 |
+
preds = np.array(preds[0], np.float32)
|
| 136 |
+
|
| 137 |
+
new_height, new_width = preds.shape[0], preds.shape[1]
|
| 138 |
+
h_start = new_height // 2 - height_even // 2
|
| 139 |
+
h_end = h_start + height
|
| 140 |
+
w_start = new_width // 2 - width_even // 2
|
| 141 |
+
w_end = w_start + width
|
| 142 |
+
preds = preds[h_start:h_end, w_start:w_end, :]
|
| 143 |
+
|
| 144 |
+
return Image.fromarray(np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(np.uint8)))
|