Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| from langchain.chains import RetrievalQA | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.llms import LlamaCpp | |
| REPO_ID = "WariHima/sarashina2.2-1b-instruct-v0.1-Q4_K_M-GGUF" | |
| FILENAME = "sarashina2.2-1b-instruct-v0.1-q4_k_m.gguf" | |
| def get_model_path(): | |
| return hf_hub_download( | |
| repo_id=REPO_ID, | |
| filename=FILENAME, | |
| repo_type="model", | |
| ) | |
| GGUF_MODEL_PATH = get_model_path() | |
| VECTOR_DB_PATH = "./vectorstore/ruri-large" | |
| EMBEDDING_MODEL = "cl-nagoya/ruri-large" | |
| class RAGSystem: | |
| def __init__(self): | |
| self.vectorstore = None | |
| self.qa_chain = None | |
| self.setup_models() | |
| def setup_models(self): | |
| self.embeddings = HuggingFaceEmbeddings( | |
| model_name=EMBEDDING_MODEL, | |
| model_kwargs={"device": "cpu"}, | |
| ) | |
| try: | |
| self.load_vectorstore() | |
| except Exception as e: | |
| print(f"ベクトルDBの読み込みに失敗しました: {str(e)}") | |
| try: | |
| self.llm = LlamaCpp( | |
| model_path=GGUF_MODEL_PATH, | |
| temperature=0.7, | |
| max_tokens=512, | |
| n_ctx=2048, # コンテキスト長 | |
| n_threads=8, # 使用するCPUスレッド数 | |
| n_gpu_layers=-1, # 可能であればGPUレイヤーを全て使用 | |
| verbose=False, | |
| streaming=True, | |
| model_kwargs={"f16_kv": True}, | |
| ) | |
| if self.vectorstore: | |
| self.setup_qa_chain() | |
| except Exception as e: | |
| print(f"LLMの読み込みに失敗しました: {str(e)}") | |
| def load_vectorstore(self): | |
| if os.path.exists(VECTOR_DB_PATH): | |
| self.vectorstore = FAISS.load_local( | |
| VECTOR_DB_PATH, | |
| self.embeddings, | |
| allow_dangerous_deserialization=True, | |
| ) | |
| if self.llm: | |
| self.setup_qa_chain() | |
| return True | |
| return False | |
| def setup_qa_chain(self): | |
| if self.vectorstore and self.llm: | |
| self.qa_chain = RetrievalQA.from_chain_type( | |
| llm=self.llm, | |
| chain_type="stuff", | |
| retriever=self.vectorstore.as_retriever(search_kwargs={"k": 3}), | |
| ) | |
| return True | |
| return False | |
| def answer_question_stream(self, question): | |
| if not self.qa_chain: | |
| if not self.vectorstore: | |
| yield "ベクトルDBが読み込まれていません。" | |
| return | |
| if not self.llm: | |
| yield "LLMモデルが読み込まれていません。" | |
| return | |
| yield "QAチェーンの初期化に失敗しました。" | |
| return | |
| try: | |
| docs = self.vectorstore.similarity_search(question, k=3) | |
| context = "\n\n".join([doc.page_content for doc in docs]) | |
| prompt = f"""与えられた文書を用いて、質問に対する適切な応答を書きなさい。 | |
| 文書: {context} | |
| 質問: {question} | |
| 応答: """ | |
| response = "" | |
| for chunk in self.llm._stream(prompt): | |
| if isinstance(chunk, str): | |
| response += chunk | |
| else: | |
| response += chunk.text | |
| yield response | |
| except Exception as e: | |
| yield f"回答生成中にエラーが発生しました: {str(e)}" | |
| def get_system_status(self): | |
| status = list() | |
| if os.path.exists(GGUF_MODEL_PATH): | |
| model_size = os.path.getsize(GGUF_MODEL_PATH) / (1024 * 1024 * 1024) | |
| status.append( | |
| f"✅ LLMモデル: {os.path.basename(GGUF_MODEL_PATH)} ({model_size:.2f} GB)" | |
| ) | |
| else: | |
| status.append(f"❌ LLMモデル: {GGUF_MODEL_PATH} が見つかりません") | |
| if os.path.exists(VECTOR_DB_PATH): | |
| status.append(f"✅ ベクトルDB: {VECTOR_DB_PATH}") | |
| else: | |
| status.append(f"❌ ベクトルDB: {VECTOR_DB_PATH} が見つかりません") | |
| status.append(f"✅ 埋め込みモデル: {EMBEDDING_MODEL}") | |
| if self.qa_chain: | |
| status.append("✅ RAGシステム: 準備完了") | |
| else: | |
| status.append("❌ RAGシステム: 初期化されていません") | |
| return "\n".join(status) | |
| rag_system = RAGSystem() | |
| with gr.Blocks(title="RAGデモアプリ") as demo: | |
| gr.Markdown("# 🎇 Sake RAG デモアプリ") | |
| gr.Markdown( | |
| "醸造協会誌5年分のデータをベクトルDBとして保持した1B級の小型言語モデルです" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| refresh_button = gr.Button("システム状態を更新", variant="secondary") | |
| status_output = gr.Textbox( | |
| label="システム状態", | |
| value=rag_system.get_system_status(), | |
| interactive=False, | |
| lines=5, | |
| ) | |
| with gr.Column(scale=2): | |
| question_input = gr.Textbox( | |
| label="質問を入力してください", | |
| placeholder="質問を入力してください", | |
| lines=2, | |
| ) | |
| submit_button = gr.Button("質問する", variant="primary") | |
| answer_output = gr.Textbox(label="回答", interactive=False, lines=10) | |
| refresh_button.click( | |
| fn=rag_system.get_system_status, | |
| inputs=[], | |
| outputs=[status_output], | |
| ) | |
| submit_button.click( | |
| fn=rag_system.answer_question_stream, | |
| inputs=[question_input], | |
| outputs=[answer_output], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |