Commit
·
e6c7152
0
Parent(s):
commit
Browse files- .gitattributes +5 -0
- LICENSE +201 -0
- README.md +22 -0
- cogvideo_EF_Net.py +222 -0
- cogvideo_Sci_Fi_inbetweening_pipeline.py +824 -0
- cogvideo_transformer.py +113 -0
- requirements.txt +21 -0
.gitattributes
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [yyyy] [name of copyright owner]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
README.md
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Sci-Fi
|
| 2 |
+
Official PyTorch implementation of "Sci-Fi: Symmetric Constraint for Frame Inbetweening"
|
| 3 |
+
|
| 4 |
+
## Quick Start
|
| 5 |
+
### 1. Setup repository and environment
|
| 6 |
+
```
|
| 7 |
+
git clone https://github.com/LiuhanChen-github/Sci-Fi.git
|
| 8 |
+
cd Sci-Fi
|
| 9 |
+
conda create -n Sci-Fi python==3.12
|
| 10 |
+
pip install -r requirements.txt
|
| 11 |
+
```
|
| 12 |
+
### 2. Download checkpoint
|
| 13 |
+
Download the CogVideoX-I2V-5B model (due to fine-tuning, the weights of the transformer denoiser are different from the original) and EF-Net. [checkpoint](https://drive.google.com/drive/folders/1H7vgiNVbxSeeleyJOqhoyRbJ97kGWGOK?usp=sharing)
|
| 14 |
+
|
| 15 |
+
### 3. Launch the inference script!
|
| 16 |
+
The example input keyframe pairs are in `examples/` folder, and
|
| 17 |
+
the corresponding generated videos (720x480, 49 frames) are placed in `outputs/` folder.
|
| 18 |
+
</br>
|
| 19 |
+
To interpolate, run:
|
| 20 |
+
```
|
| 21 |
+
bash Sci_Fi_frame_inbetweening.sh
|
| 22 |
+
```
|
cogvideo_EF_Net.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from diffusers.models.transformers.cogvideox_transformer_3d import Transformer2DModelOutput, CogVideoXBlock
|
| 8 |
+
from diffusers.utils import is_torch_version
|
| 9 |
+
from diffusers.loaders import PeftAdapterMixin
|
| 10 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 11 |
+
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
|
| 12 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 13 |
+
from diffusers.models.attention import Attention, FeedForward
|
| 14 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor2_0
|
| 15 |
+
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero, AdaLayerNormZeroSingle
|
| 16 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class CogVideoX_EF_Net(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
| 20 |
+
_supports_gradient_checkpointing = True
|
| 21 |
+
|
| 22 |
+
@register_to_config
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
num_attention_heads: int = 30,
|
| 26 |
+
attention_head_dim: int = 64,
|
| 27 |
+
vae_channels: int = 16,
|
| 28 |
+
in_channels: int = 3,
|
| 29 |
+
downscale_coef: int = 8,
|
| 30 |
+
flip_sin_to_cos: bool = True,
|
| 31 |
+
freq_shift: int = 0,
|
| 32 |
+
time_embed_dim: int = 512,
|
| 33 |
+
num_layers: int = 8,
|
| 34 |
+
dropout: float = 0.0,
|
| 35 |
+
attention_bias: bool = True,
|
| 36 |
+
sample_width: int = 90,
|
| 37 |
+
sample_height: int = 60,
|
| 38 |
+
sample_frames: int = 1,
|
| 39 |
+
patch_size: int = 2,
|
| 40 |
+
temporal_compression_ratio: int = 4,
|
| 41 |
+
max_text_seq_length: int = 226,
|
| 42 |
+
activation_fn: str = "gelu-approximate",
|
| 43 |
+
timestep_activation_fn: str = "silu",
|
| 44 |
+
norm_elementwise_affine: bool = True,
|
| 45 |
+
norm_eps: float = 1e-5,
|
| 46 |
+
spatial_interpolation_scale: float = 1.875,
|
| 47 |
+
temporal_interpolation_scale: float = 1.0,
|
| 48 |
+
use_rotary_positional_embeddings: bool = False,
|
| 49 |
+
use_learned_positional_embeddings: bool = False,
|
| 50 |
+
out_proj_dim = None,
|
| 51 |
+
):
|
| 52 |
+
super().__init__()
|
| 53 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 54 |
+
out_proj_dim = inner_dim
|
| 55 |
+
|
| 56 |
+
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
|
| 57 |
+
raise ValueError(
|
| 58 |
+
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
|
| 59 |
+
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
|
| 60 |
+
"issue at https://github.com/huggingface/diffusers/issues."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# 1. Patch embedding
|
| 64 |
+
self.patch_embed = CogVideoXPatchEmbed(
|
| 65 |
+
patch_size=patch_size,
|
| 66 |
+
in_channels=vae_channels,
|
| 67 |
+
embed_dim=inner_dim,
|
| 68 |
+
bias=True,
|
| 69 |
+
sample_width=sample_width,
|
| 70 |
+
sample_height=sample_height,
|
| 71 |
+
sample_frames=49,
|
| 72 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
| 73 |
+
spatial_interpolation_scale=spatial_interpolation_scale,
|
| 74 |
+
temporal_interpolation_scale=temporal_interpolation_scale,
|
| 75 |
+
use_positional_embeddings=not use_rotary_positional_embeddings,
|
| 76 |
+
use_learned_positional_embeddings=use_learned_positional_embeddings,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
self.patch_embed_first = CogVideoXPatchEmbed(
|
| 80 |
+
patch_size=patch_size,
|
| 81 |
+
in_channels=vae_channels,
|
| 82 |
+
embed_dim=inner_dim,
|
| 83 |
+
bias=True,
|
| 84 |
+
sample_width=sample_width,
|
| 85 |
+
sample_height=sample_height,
|
| 86 |
+
sample_frames=sample_frames,
|
| 87 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
| 88 |
+
spatial_interpolation_scale=spatial_interpolation_scale,
|
| 89 |
+
temporal_interpolation_scale=temporal_interpolation_scale,
|
| 90 |
+
use_positional_embeddings=not use_rotary_positional_embeddings,
|
| 91 |
+
use_learned_positional_embeddings=use_learned_positional_embeddings,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
self.embedding_dropout = nn.Dropout(dropout)
|
| 95 |
+
self.weights = nn.ModuleList([nn.Linear(inner_dim, 13) for _ in range(num_layers)])
|
| 96 |
+
self.first_weights = nn.ModuleList([nn.Linear(2*inner_dim, inner_dim) for _ in range(num_layers)])
|
| 97 |
+
|
| 98 |
+
# 2. Time embeddings
|
| 99 |
+
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
| 100 |
+
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
| 101 |
+
|
| 102 |
+
# 3. Define spatio-temporal transformers blocks
|
| 103 |
+
self.transformer_blocks = nn.ModuleList(
|
| 104 |
+
[
|
| 105 |
+
CogVideoXBlock(
|
| 106 |
+
dim=inner_dim,
|
| 107 |
+
num_attention_heads=num_attention_heads,
|
| 108 |
+
attention_head_dim=attention_head_dim,
|
| 109 |
+
time_embed_dim=time_embed_dim,
|
| 110 |
+
dropout=dropout,
|
| 111 |
+
activation_fn=activation_fn,
|
| 112 |
+
attention_bias=attention_bias,
|
| 113 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 114 |
+
norm_eps=norm_eps,
|
| 115 |
+
)
|
| 116 |
+
for _ in range(num_layers)
|
| 117 |
+
]
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
self.out_projectors = None
|
| 121 |
+
self.relu = nn.LeakyReLU(negative_slope=0.01)
|
| 122 |
+
|
| 123 |
+
if out_proj_dim is not None:
|
| 124 |
+
self.out_projectors = nn.ModuleList(
|
| 125 |
+
[nn.Linear(inner_dim, out_proj_dim) for _ in range(num_layers)]
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
self.gradient_checkpointing = False
|
| 129 |
+
|
| 130 |
+
def _set_gradient_checkpointing(self, enable=False, gradient_checkpointing_func=None):
|
| 131 |
+
self.gradient_checkpointing = enable
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def forward(
|
| 135 |
+
self,
|
| 136 |
+
hidden_states: torch.Tensor,
|
| 137 |
+
encoder_hidden_states: torch.Tensor,
|
| 138 |
+
EF_Net_states: torch.Tensor,
|
| 139 |
+
timestep: Union[int, float, torch.LongTensor],
|
| 140 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 141 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 142 |
+
return_dict: bool = True,
|
| 143 |
+
):
|
| 144 |
+
batch_size, num_frames, channels, height, width = EF_Net_states.shape
|
| 145 |
+
o_hidden_states = hidden_states
|
| 146 |
+
hidden_states = EF_Net_states
|
| 147 |
+
encoder_hidden_states_ = encoder_hidden_states
|
| 148 |
+
|
| 149 |
+
# 1. Time embedding
|
| 150 |
+
timesteps = timestep
|
| 151 |
+
t_emb = self.time_proj(timesteps)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 155 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 156 |
+
# there might be better ways to encapsulate this.
|
| 157 |
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
| 158 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 159 |
+
|
| 160 |
+
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
| 161 |
+
hidden_states = self.embedding_dropout(hidden_states)
|
| 162 |
+
|
| 163 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
| 164 |
+
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
| 165 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
| 166 |
+
|
| 167 |
+
o_hidden_states = self.patch_embed_first(encoder_hidden_states_, o_hidden_states)
|
| 168 |
+
o_hidden_states = self.embedding_dropout(o_hidden_states)
|
| 169 |
+
|
| 170 |
+
text_seq_length = encoder_hidden_states_.shape[1]
|
| 171 |
+
o_hidden_states = o_hidden_states[:, text_seq_length:]
|
| 172 |
+
|
| 173 |
+
EF_Net_hidden_states = ()
|
| 174 |
+
# 2. Transformer blocks
|
| 175 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 176 |
+
#if self.training and self.gradient_checkpointing:
|
| 177 |
+
if self.gradient_checkpointing:
|
| 178 |
+
|
| 179 |
+
def create_custom_forward(module):
|
| 180 |
+
def custom_forward(*inputs):
|
| 181 |
+
return module(*inputs)
|
| 182 |
+
|
| 183 |
+
return custom_forward
|
| 184 |
+
|
| 185 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 186 |
+
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
| 187 |
+
create_custom_forward(block),
|
| 188 |
+
hidden_states,
|
| 189 |
+
encoder_hidden_states,
|
| 190 |
+
emb,
|
| 191 |
+
image_rotary_emb,
|
| 192 |
+
**ckpt_kwargs,
|
| 193 |
+
)
|
| 194 |
+
else:
|
| 195 |
+
hidden_states, encoder_hidden_states = block(
|
| 196 |
+
hidden_states=hidden_states,
|
| 197 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 198 |
+
temb=emb,
|
| 199 |
+
image_rotary_emb=image_rotary_emb,
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
if self.out_projectors is not None:
|
| 204 |
+
coff = self.weights[i](hidden_states)
|
| 205 |
+
temp_list = []
|
| 206 |
+
for j in range(coff.shape[2]):
|
| 207 |
+
temp_list.append(hidden_states*coff[:,:,j:(j+1)])
|
| 208 |
+
out = torch.concat(temp_list, dim=1)
|
| 209 |
+
out = torch.concat([out, o_hidden_states], dim=2)
|
| 210 |
+
out = self.first_weights[i](out)
|
| 211 |
+
out = self.relu(out)
|
| 212 |
+
out = self.out_projectors[i](out)
|
| 213 |
+
EF_Net_hidden_states += (out,)
|
| 214 |
+
else:
|
| 215 |
+
out = torch.concat([weight*hidden_states for weight in self.weights], dim=1)
|
| 216 |
+
EF_Net_hidden_states += (out,)
|
| 217 |
+
|
| 218 |
+
if not return_dict:
|
| 219 |
+
return (EF_Net_hidden_states,)
|
| 220 |
+
return Transformer2DModelOutput(sample=EF_Net_hidden_states)
|
| 221 |
+
|
| 222 |
+
|
cogvideo_Sci_Fi_inbetweening_pipeline.py
ADDED
|
@@ -0,0 +1,824 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
import math
|
| 3 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
import PIL
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from torchvision import transforms
|
| 10 |
+
from einops import rearrange, repeat
|
| 11 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
| 12 |
+
from diffusers.video_processor import VideoProcessor
|
| 13 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 14 |
+
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
| 15 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 16 |
+
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
| 17 |
+
from diffusers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler, CogVideoXImageToVideoPipeline
|
| 18 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 19 |
+
from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipelineOutput, CogVideoXLoraLoaderMixin
|
| 20 |
+
|
| 21 |
+
from cogvideo_EF_Net import CogVideoX_EF_Net
|
| 22 |
+
import torch
|
| 23 |
+
|
| 24 |
+
def resize_for_crop(image, crop_h, crop_w):
|
| 25 |
+
img_h, img_w = image.shape[-2:]
|
| 26 |
+
if img_h >= crop_h and img_w >= crop_w:
|
| 27 |
+
coef = max(crop_h / img_h, crop_w / img_w)
|
| 28 |
+
elif img_h <= crop_h and img_w <= crop_w:
|
| 29 |
+
coef = max(crop_h / img_h, crop_w / img_w)
|
| 30 |
+
else:
|
| 31 |
+
coef = crop_h / img_h if crop_h > img_h else crop_w / img_w
|
| 32 |
+
out_h, out_w = int(img_h * coef), int(img_w * coef)
|
| 33 |
+
resized_image = transforms.functional.resize(image, (out_h, out_w), antialias=True)
|
| 34 |
+
return resized_image
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def prepare_frames(input_images, video_size, do_resize=True, do_crop=True):
|
| 38 |
+
images_tensor = input_images
|
| 39 |
+
if do_resize:
|
| 40 |
+
images_tensor = [resize_for_crop(x, crop_h=video_size[0], crop_w=video_size[1]) for x in images_tensor]
|
| 41 |
+
if do_crop:
|
| 42 |
+
images_tensor = [transforms.functional.center_crop(x, video_size) for x in images_tensor]
|
| 43 |
+
if isinstance(images_tensor, list):
|
| 44 |
+
images_tensor = torch.stack(images_tensor)
|
| 45 |
+
print(images_tensor.shape)
|
| 46 |
+
return images_tensor.unsqueeze(0)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
| 50 |
+
tw = tgt_width
|
| 51 |
+
th = tgt_height
|
| 52 |
+
h, w = src
|
| 53 |
+
r = h / w
|
| 54 |
+
if r > (th / tw):
|
| 55 |
+
resize_height = th
|
| 56 |
+
resize_width = int(round(th / h * w))
|
| 57 |
+
else:
|
| 58 |
+
resize_width = tw
|
| 59 |
+
resize_height = int(round(tw / w * h))
|
| 60 |
+
|
| 61 |
+
crop_top = int(round((th - resize_height) / 2.0))
|
| 62 |
+
crop_left = int(round((tw - resize_width) / 2.0))
|
| 63 |
+
|
| 64 |
+
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 68 |
+
def retrieve_timesteps(
|
| 69 |
+
scheduler,
|
| 70 |
+
num_inference_steps: Optional[int] = None,
|
| 71 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 72 |
+
timesteps: Optional[List[int]] = None,
|
| 73 |
+
sigmas: Optional[List[float]] = None,
|
| 74 |
+
**kwargs,
|
| 75 |
+
):
|
| 76 |
+
"""
|
| 77 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 78 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
scheduler (`SchedulerMixin`):
|
| 82 |
+
The scheduler to get timesteps from.
|
| 83 |
+
num_inference_steps (`int`):
|
| 84 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 85 |
+
must be `None`.
|
| 86 |
+
device (`str` or `torch.device`, *optional*):
|
| 87 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 88 |
+
timesteps (`List[int]`, *optional*):
|
| 89 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 90 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 91 |
+
sigmas (`List[float]`, *optional*):
|
| 92 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 93 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 94 |
+
|
| 95 |
+
Returns:
|
| 96 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 97 |
+
second element is the number of inference steps.
|
| 98 |
+
"""
|
| 99 |
+
if timesteps is not None and sigmas is not None:
|
| 100 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 101 |
+
if timesteps is not None:
|
| 102 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 103 |
+
if not accepts_timesteps:
|
| 104 |
+
raise ValueError(
|
| 105 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 106 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 107 |
+
)
|
| 108 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 109 |
+
timesteps = scheduler.timesteps
|
| 110 |
+
num_inference_steps = len(timesteps)
|
| 111 |
+
elif sigmas is not None:
|
| 112 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 113 |
+
if not accept_sigmas:
|
| 114 |
+
raise ValueError(
|
| 115 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 116 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 117 |
+
)
|
| 118 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 119 |
+
timesteps = scheduler.timesteps
|
| 120 |
+
num_inference_steps = len(timesteps)
|
| 121 |
+
else:
|
| 122 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 123 |
+
timesteps = scheduler.timesteps
|
| 124 |
+
return timesteps, num_inference_steps
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def retrieve_latents(
|
| 128 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
| 129 |
+
):
|
| 130 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 131 |
+
return encoder_output.latent_dist.sample(generator)
|
| 132 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 133 |
+
return encoder_output.latent_dist.mode()
|
| 134 |
+
elif hasattr(encoder_output, "latents"):
|
| 135 |
+
return encoder_output.latents
|
| 136 |
+
else:
|
| 137 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class CogVideoXEFNetInbetweeningPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
| 141 |
+
r"""
|
| 142 |
+
Pipeline for frame inbetweening generation using CogVideoX.
|
| 143 |
+
|
| 144 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 145 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
vae ([`AutoencoderKL`]):
|
| 149 |
+
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
| 150 |
+
text_encoder ([`T5EncoderModel`]):
|
| 151 |
+
Frozen text-encoder. CogVideoX uses
|
| 152 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
|
| 153 |
+
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
| 154 |
+
tokenizer (`T5Tokenizer`):
|
| 155 |
+
Tokenizer of class
|
| 156 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
| 157 |
+
transformer ([`CogVideoXTransformer3DModel`]):
|
| 158 |
+
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
| 159 |
+
scheduler ([`SchedulerMixin`]):
|
| 160 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
| 161 |
+
EF-Net ([CogVideoX_EF_Net]):
|
| 162 |
+
Our proposed EF-Net.
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
_optional_components = []
|
| 166 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
| 167 |
+
|
| 168 |
+
_callback_tensor_inputs = [
|
| 169 |
+
"latents",
|
| 170 |
+
"prompt_embeds",
|
| 171 |
+
"negative_prompt_embeds",
|
| 172 |
+
]
|
| 173 |
+
|
| 174 |
+
def __init__(
|
| 175 |
+
self,
|
| 176 |
+
tokenizer: T5Tokenizer,
|
| 177 |
+
text_encoder: T5EncoderModel,
|
| 178 |
+
vae: AutoencoderKLCogVideoX,
|
| 179 |
+
transformer: CogVideoXTransformer3DModel,
|
| 180 |
+
EF_Net: CogVideoX_EF_Net,
|
| 181 |
+
scheduler: CogVideoXDDIMScheduler,
|
| 182 |
+
):
|
| 183 |
+
super().__init__()
|
| 184 |
+
|
| 185 |
+
self.register_modules(
|
| 186 |
+
tokenizer=tokenizer,
|
| 187 |
+
text_encoder=text_encoder,
|
| 188 |
+
vae=vae,
|
| 189 |
+
transformer=transformer,
|
| 190 |
+
EF_Net=EF_Net,
|
| 191 |
+
scheduler=scheduler,
|
| 192 |
+
)
|
| 193 |
+
self.vae_scale_factor_spatial = (
|
| 194 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
| 195 |
+
)
|
| 196 |
+
self.vae_scale_factor_temporal = (
|
| 197 |
+
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
| 198 |
+
)
|
| 199 |
+
self.vae_scaling_factor_image = (
|
| 200 |
+
self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
| 204 |
+
|
| 205 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds
|
| 206 |
+
def _get_t5_prompt_embeds(
|
| 207 |
+
self,
|
| 208 |
+
prompt: Union[str, List[str]] = None,
|
| 209 |
+
num_videos_per_prompt: int = 1,
|
| 210 |
+
max_sequence_length: int = 226,
|
| 211 |
+
device: Optional[torch.device] = None,
|
| 212 |
+
dtype: Optional[torch.dtype] = None,
|
| 213 |
+
):
|
| 214 |
+
device = device or self._execution_device
|
| 215 |
+
dtype = dtype or self.text_encoder.dtype
|
| 216 |
+
|
| 217 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 218 |
+
batch_size = len(prompt)
|
| 219 |
+
|
| 220 |
+
text_inputs = self.tokenizer(
|
| 221 |
+
prompt,
|
| 222 |
+
padding="max_length",
|
| 223 |
+
max_length=max_sequence_length,
|
| 224 |
+
truncation=True,
|
| 225 |
+
add_special_tokens=True,
|
| 226 |
+
return_tensors="pt",
|
| 227 |
+
)
|
| 228 |
+
text_input_ids = text_inputs.input_ids
|
| 229 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 230 |
+
|
| 231 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 232 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
| 233 |
+
"""
|
| 234 |
+
logger.warning(
|
| 235 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 236 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
| 237 |
+
)
|
| 238 |
+
"""
|
| 239 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
|
| 240 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 241 |
+
|
| 242 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 243 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 244 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
| 245 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
| 246 |
+
|
| 247 |
+
return prompt_embeds
|
| 248 |
+
|
| 249 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt
|
| 250 |
+
def encode_prompt(
|
| 251 |
+
self,
|
| 252 |
+
prompt: Union[str, List[str]],
|
| 253 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 254 |
+
do_classifier_free_guidance: bool = True,
|
| 255 |
+
num_videos_per_prompt: int = 1,
|
| 256 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 257 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 258 |
+
max_sequence_length: int = 226,
|
| 259 |
+
device: Optional[torch.device] = None,
|
| 260 |
+
dtype: Optional[torch.dtype] = None,
|
| 261 |
+
):
|
| 262 |
+
r"""
|
| 263 |
+
Encodes the prompt into text encoder hidden states.
|
| 264 |
+
|
| 265 |
+
Args:
|
| 266 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 267 |
+
prompt to be encoded
|
| 268 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 269 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 270 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 271 |
+
less than `1`).
|
| 272 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
| 273 |
+
Whether to use classifier free guidance or not.
|
| 274 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
| 275 |
+
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
| 276 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 277 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 278 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 279 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 280 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 281 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 282 |
+
argument.
|
| 283 |
+
device: (`torch.device`, *optional*):
|
| 284 |
+
torch device
|
| 285 |
+
dtype: (`torch.dtype`, *optional*):
|
| 286 |
+
torch dtype
|
| 287 |
+
"""
|
| 288 |
+
device = device or self._execution_device
|
| 289 |
+
|
| 290 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 291 |
+
if prompt is not None:
|
| 292 |
+
batch_size = len(prompt)
|
| 293 |
+
else:
|
| 294 |
+
batch_size = prompt_embeds.shape[0]
|
| 295 |
+
|
| 296 |
+
if prompt_embeds is None:
|
| 297 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
| 298 |
+
prompt=prompt,
|
| 299 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
| 300 |
+
max_sequence_length=max_sequence_length,
|
| 301 |
+
device=device,
|
| 302 |
+
dtype=dtype,
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 306 |
+
negative_prompt = negative_prompt or ""
|
| 307 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
| 308 |
+
|
| 309 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 310 |
+
raise TypeError(
|
| 311 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 312 |
+
f" {type(prompt)}."
|
| 313 |
+
)
|
| 314 |
+
elif batch_size != len(negative_prompt):
|
| 315 |
+
raise ValueError(
|
| 316 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 317 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 318 |
+
" the batch size of `prompt`."
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
| 322 |
+
prompt=negative_prompt,
|
| 323 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
| 324 |
+
max_sequence_length=max_sequence_length,
|
| 325 |
+
device=device,
|
| 326 |
+
dtype=dtype,
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
return prompt_embeds, negative_prompt_embeds
|
| 330 |
+
|
| 331 |
+
def prepare_latents(
|
| 332 |
+
self,
|
| 333 |
+
first_image: torch.Tensor,
|
| 334 |
+
last_image: torch.Tensor,
|
| 335 |
+
batch_size: int = 1,
|
| 336 |
+
num_channels_latents: int = 16,
|
| 337 |
+
num_frames: int = 13,
|
| 338 |
+
height: int = 60,
|
| 339 |
+
width: int = 90,
|
| 340 |
+
dtype: Optional[torch.dtype] = None,
|
| 341 |
+
device: Optional[torch.device] = None,
|
| 342 |
+
generator: Optional[torch.Generator] = None,
|
| 343 |
+
latents: Optional[torch.Tensor] = None,
|
| 344 |
+
):
|
| 345 |
+
num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
| 346 |
+
shape = (
|
| 347 |
+
batch_size,
|
| 348 |
+
num_frames,
|
| 349 |
+
num_channels_latents,
|
| 350 |
+
height // self.vae_scale_factor_spatial,
|
| 351 |
+
width // self.vae_scale_factor_spatial,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 355 |
+
raise ValueError(
|
| 356 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 357 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
first_image = first_image.unsqueeze(2) # [B, C, F, H, W]
|
| 361 |
+
last_image = last_image.unsqueeze(2) # [B, C, F, H, W]
|
| 362 |
+
|
| 363 |
+
if isinstance(generator, list):
|
| 364 |
+
first_image_latents = [
|
| 365 |
+
retrieve_latents(self.vae.encode(first_image[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
|
| 366 |
+
]
|
| 367 |
+
else:
|
| 368 |
+
first_image_latents = [retrieve_latents(self.vae.encode(first_img.unsqueeze(0)), generator) for first_img in first_image]
|
| 369 |
+
|
| 370 |
+
if isinstance(generator, list):
|
| 371 |
+
last_image_latents = [
|
| 372 |
+
retrieve_latents(self.vae.encode(last_image[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
|
| 373 |
+
]
|
| 374 |
+
else:
|
| 375 |
+
last_image_latents = [retrieve_latents(self.vae.encode(last_img.unsqueeze(0)), generator) for last_img in last_image]
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
first_image_latents = torch.cat(first_image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
| 379 |
+
first_image_latents = self.vae.config.scaling_factor * first_image_latents
|
| 380 |
+
last_image_latents = torch.cat(last_image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
| 381 |
+
last_image_latents = self.vae.config.scaling_factor * last_image_latents
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
padding_shape = (
|
| 385 |
+
batch_size,
|
| 386 |
+
num_frames - 2,
|
| 387 |
+
num_channels_latents,
|
| 388 |
+
height // self.vae_scale_factor_spatial,
|
| 389 |
+
width // self.vae_scale_factor_spatial,
|
| 390 |
+
)
|
| 391 |
+
latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype)
|
| 392 |
+
image_latents = torch.cat([first_image_latents, latent_padding, last_image_latents], dim=1)
|
| 393 |
+
|
| 394 |
+
if latents is None:
|
| 395 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 396 |
+
else:
|
| 397 |
+
latents = latents.to(device)
|
| 398 |
+
|
| 399 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 400 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 401 |
+
return latents, image_latents
|
| 402 |
+
|
| 403 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents
|
| 404 |
+
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
| 405 |
+
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
| 406 |
+
latents = 1 / self.vae_scaling_factor_image * latents
|
| 407 |
+
|
| 408 |
+
frames = self.vae.decode(latents).sample
|
| 409 |
+
return frames
|
| 410 |
+
|
| 411 |
+
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps
|
| 412 |
+
def get_timesteps(self, num_inference_steps, timesteps, strength, device):
|
| 413 |
+
# get the original timestep using init_timestep
|
| 414 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 415 |
+
|
| 416 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 417 |
+
timesteps = timesteps[t_start * self.scheduler.order :]
|
| 418 |
+
|
| 419 |
+
return timesteps, num_inference_steps - t_start
|
| 420 |
+
|
| 421 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 422 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 423 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 424 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 425 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 426 |
+
# and should be between [0, 1]
|
| 427 |
+
|
| 428 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 429 |
+
extra_step_kwargs = {}
|
| 430 |
+
if accepts_eta:
|
| 431 |
+
extra_step_kwargs["eta"] = eta
|
| 432 |
+
|
| 433 |
+
# check if the scheduler accepts generator
|
| 434 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 435 |
+
if accepts_generator:
|
| 436 |
+
extra_step_kwargs["generator"] = generator
|
| 437 |
+
return extra_step_kwargs
|
| 438 |
+
|
| 439 |
+
def check_inputs(
|
| 440 |
+
self,
|
| 441 |
+
image,
|
| 442 |
+
prompt,
|
| 443 |
+
height,
|
| 444 |
+
width,
|
| 445 |
+
negative_prompt,
|
| 446 |
+
callback_on_step_end_tensor_inputs,
|
| 447 |
+
latents=None,
|
| 448 |
+
prompt_embeds=None,
|
| 449 |
+
negative_prompt_embeds=None,
|
| 450 |
+
):
|
| 451 |
+
if (
|
| 452 |
+
not isinstance(image, torch.Tensor)
|
| 453 |
+
and not isinstance(image, PIL.Image.Image)
|
| 454 |
+
and not isinstance(image, list)
|
| 455 |
+
):
|
| 456 |
+
raise ValueError(
|
| 457 |
+
"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
| 458 |
+
f" {type(image)}"
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 462 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 463 |
+
|
| 464 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 465 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 466 |
+
):
|
| 467 |
+
raise ValueError(
|
| 468 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 469 |
+
)
|
| 470 |
+
if prompt is not None and prompt_embeds is not None:
|
| 471 |
+
raise ValueError(
|
| 472 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 473 |
+
" only forward one of the two."
|
| 474 |
+
)
|
| 475 |
+
elif prompt is None and prompt_embeds is None:
|
| 476 |
+
raise ValueError(
|
| 477 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 478 |
+
)
|
| 479 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 480 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 481 |
+
|
| 482 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
| 483 |
+
raise ValueError(
|
| 484 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
| 485 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 489 |
+
raise ValueError(
|
| 490 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 491 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 495 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 496 |
+
raise ValueError(
|
| 497 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 498 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 499 |
+
f" {negative_prompt_embeds.shape}."
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.fuse_qkv_projections
|
| 503 |
+
def fuse_qkv_projections(self) -> None:
|
| 504 |
+
r"""Enables fused QKV projections."""
|
| 505 |
+
self.fusing_transformer = True
|
| 506 |
+
self.transformer.fuse_qkv_projections()
|
| 507 |
+
|
| 508 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.unfuse_qkv_projections
|
| 509 |
+
def unfuse_qkv_projections(self) -> None:
|
| 510 |
+
r"""Disable QKV projection fusion if enabled."""
|
| 511 |
+
if not self.fusing_transformer:
|
| 512 |
+
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
|
| 513 |
+
else:
|
| 514 |
+
self.transformer.unfuse_qkv_projections()
|
| 515 |
+
self.fusing_transformer = False
|
| 516 |
+
|
| 517 |
+
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._prepare_rotary_positional_embeddings
|
| 518 |
+
def _prepare_rotary_positional_embeddings(
|
| 519 |
+
self,
|
| 520 |
+
height: int,
|
| 521 |
+
width: int,
|
| 522 |
+
num_frames: int,
|
| 523 |
+
device: torch.device,
|
| 524 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 525 |
+
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
| 526 |
+
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
| 527 |
+
|
| 528 |
+
p = self.transformer.config.patch_size
|
| 529 |
+
p_t = self.transformer.config.patch_size_t
|
| 530 |
+
|
| 531 |
+
base_size_width = self.transformer.config.sample_width // p
|
| 532 |
+
base_size_height = self.transformer.config.sample_height // p
|
| 533 |
+
|
| 534 |
+
if p_t is None:
|
| 535 |
+
# CogVideoX 1.0
|
| 536 |
+
grid_crops_coords = get_resize_crop_region_for_grid(
|
| 537 |
+
(grid_height, grid_width), base_size_width, base_size_height
|
| 538 |
+
)
|
| 539 |
+
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
| 540 |
+
embed_dim=self.transformer.config.attention_head_dim,
|
| 541 |
+
crops_coords=grid_crops_coords,
|
| 542 |
+
grid_size=(grid_height, grid_width),
|
| 543 |
+
temporal_size=num_frames,
|
| 544 |
+
)
|
| 545 |
+
else:
|
| 546 |
+
# CogVideoX 1.5
|
| 547 |
+
base_num_frames = (num_frames + p_t - 1) // p_t
|
| 548 |
+
|
| 549 |
+
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
| 550 |
+
embed_dim=self.transformer.config.attention_head_dim,
|
| 551 |
+
crops_coords=None,
|
| 552 |
+
grid_size=(grid_height, grid_width),
|
| 553 |
+
temporal_size=base_num_frames,
|
| 554 |
+
grid_type="slice",
|
| 555 |
+
max_size=(base_size_height, base_size_width),
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
freqs_cos = freqs_cos.to(device=device)
|
| 559 |
+
freqs_sin = freqs_sin.to(device=device)
|
| 560 |
+
return freqs_cos, freqs_sin
|
| 561 |
+
|
| 562 |
+
def prepare_EF_Net_frames(self, EF_Net_frames, height, width, do_classifier_free_guidance):
|
| 563 |
+
prepared_frames = prepare_frames(EF_Net_frames, (height, width))
|
| 564 |
+
EF_Net_encoded_frames = prepared_frames.to(dtype=self.vae.dtype, device='cuda')
|
| 565 |
+
EF_Net_encoded_frames = EF_Net_encoded_frames.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
|
| 566 |
+
EF_Net_encoded_frames = self.vae.encode(EF_Net_encoded_frames).latent_dist.sample() * self.vae.config.scaling_factor
|
| 567 |
+
|
| 568 |
+
EF_Net_encoded_frames = EF_Net_encoded_frames.permute(0, 2, 1, 3, 4).to(memory_format=torch.contiguous_format)
|
| 569 |
+
EF_Net_encoded_frames = torch.cat([EF_Net_encoded_frames] * 2) if do_classifier_free_guidance else EF_Net_encoded_frames
|
| 570 |
+
|
| 571 |
+
return EF_Net_encoded_frames.contiguous()
|
| 572 |
+
|
| 573 |
+
@property
|
| 574 |
+
def guidance_scale(self):
|
| 575 |
+
return self._guidance_scale
|
| 576 |
+
|
| 577 |
+
@property
|
| 578 |
+
def num_timesteps(self):
|
| 579 |
+
return self._num_timesteps
|
| 580 |
+
|
| 581 |
+
@property
|
| 582 |
+
def attention_kwargs(self):
|
| 583 |
+
return self._attention_kwargs
|
| 584 |
+
|
| 585 |
+
@property
|
| 586 |
+
def interrupt(self):
|
| 587 |
+
return self._interrupt
|
| 588 |
+
|
| 589 |
+
@torch.no_grad()
|
| 590 |
+
def __call__(
|
| 591 |
+
self,
|
| 592 |
+
first_image,
|
| 593 |
+
last_image,
|
| 594 |
+
EF_Net_frames = None,
|
| 595 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
| 596 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 597 |
+
height: Optional[int] = None,
|
| 598 |
+
width: Optional[int] = None,
|
| 599 |
+
num_frames: int = 49,
|
| 600 |
+
num_inference_steps: int = 50,
|
| 601 |
+
timesteps: Optional[List[int]] = None,
|
| 602 |
+
guidance_scale: float = 6,
|
| 603 |
+
use_dynamic_cfg: bool = False,
|
| 604 |
+
num_videos_per_prompt: int = 1,
|
| 605 |
+
eta: float = 0.0,
|
| 606 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 607 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 608 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 609 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 610 |
+
EF_Net_latents: Optional[torch.FloatTensor] = None,
|
| 611 |
+
output_type: str = "pil",
|
| 612 |
+
return_dict: bool = True,
|
| 613 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 614 |
+
callback_on_step_end: Optional[
|
| 615 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 616 |
+
] = None,
|
| 617 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 618 |
+
max_sequence_length: int = 226,
|
| 619 |
+
EF_Net_weights: Optional[Union[float, list, np.ndarray, torch.FloatTensor]] = 1.0,
|
| 620 |
+
EF_Net_guidance_start: float = 0.0,
|
| 621 |
+
EF_Net_guidance_end: float = 1.0,
|
| 622 |
+
) -> Union[CogVideoXPipelineOutput, Tuple]:
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 626 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 627 |
+
|
| 628 |
+
height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
|
| 629 |
+
width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
|
| 630 |
+
num_frames = num_frames or self.transformer.config.sample_frames
|
| 631 |
+
|
| 632 |
+
num_videos_per_prompt = 1
|
| 633 |
+
|
| 634 |
+
# 1. Check inputs. Raise error if not correct
|
| 635 |
+
self.check_inputs(
|
| 636 |
+
image=first_image,
|
| 637 |
+
prompt=prompt,
|
| 638 |
+
height=height,
|
| 639 |
+
width=width,
|
| 640 |
+
negative_prompt=negative_prompt,
|
| 641 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 642 |
+
latents=latents,
|
| 643 |
+
prompt_embeds=prompt_embeds,
|
| 644 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 645 |
+
)
|
| 646 |
+
self._guidance_scale = guidance_scale
|
| 647 |
+
self._attention_kwargs = attention_kwargs
|
| 648 |
+
self._interrupt = False
|
| 649 |
+
|
| 650 |
+
# 2. Default call parameters
|
| 651 |
+
if prompt is not None and isinstance(prompt, str):
|
| 652 |
+
batch_size = 1
|
| 653 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 654 |
+
batch_size = len(prompt)
|
| 655 |
+
else:
|
| 656 |
+
batch_size = prompt_embeds.shape[0]
|
| 657 |
+
|
| 658 |
+
device = self._execution_device
|
| 659 |
+
|
| 660 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 661 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 662 |
+
# corresponds to doing no classifier free guidance.
|
| 663 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 664 |
+
|
| 665 |
+
# 3. Encode input prompt
|
| 666 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 667 |
+
prompt=prompt,
|
| 668 |
+
negative_prompt=negative_prompt,
|
| 669 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 670 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
| 671 |
+
prompt_embeds=prompt_embeds,
|
| 672 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 673 |
+
max_sequence_length=max_sequence_length,
|
| 674 |
+
device=device,
|
| 675 |
+
)
|
| 676 |
+
if do_classifier_free_guidance:
|
| 677 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 678 |
+
|
| 679 |
+
# 4. Prepare timesteps
|
| 680 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
| 681 |
+
|
| 682 |
+
self._num_timesteps = len(timesteps)
|
| 683 |
+
|
| 684 |
+
# 5. Prepare latents
|
| 685 |
+
latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
| 686 |
+
|
| 687 |
+
first_image = self.video_processor.preprocess(first_image, height=height, width=width).to(
|
| 688 |
+
device, dtype=prompt_embeds.dtype
|
| 689 |
+
)
|
| 690 |
+
last_image = self.video_processor.preprocess(last_image, height=height, width=width).to(
|
| 691 |
+
device, dtype=prompt_embeds.dtype
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
latent_channels = self.transformer.config.in_channels // 2
|
| 695 |
+
latents, image_latents = self.prepare_latents(
|
| 696 |
+
first_image,
|
| 697 |
+
last_image,
|
| 698 |
+
batch_size * num_videos_per_prompt,
|
| 699 |
+
latent_channels,
|
| 700 |
+
num_frames,
|
| 701 |
+
height,
|
| 702 |
+
width,
|
| 703 |
+
prompt_embeds.dtype,
|
| 704 |
+
device,
|
| 705 |
+
generator,
|
| 706 |
+
latents,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 710 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 711 |
+
|
| 712 |
+
# 7. Create rotary embeds if required
|
| 713 |
+
image_rotary_emb = (
|
| 714 |
+
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
|
| 715 |
+
if self.transformer.config.use_rotary_positional_embeddings
|
| 716 |
+
else None
|
| 717 |
+
)
|
| 718 |
+
|
| 719 |
+
# 8. Create ofs embeds if required
|
| 720 |
+
ofs_emb = None if self.transformer.config.ofs_embed_dim is None else latents.new_full((1,), fill_value=2.0)
|
| 721 |
+
|
| 722 |
+
# 9. Denoising loop
|
| 723 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 724 |
+
|
| 725 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 726 |
+
# for DPM-solver++
|
| 727 |
+
old_pred_original_sample = None
|
| 728 |
+
for i, t in enumerate(timesteps):
|
| 729 |
+
if self.interrupt:
|
| 730 |
+
continue
|
| 731 |
+
|
| 732 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 733 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 734 |
+
latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
|
| 735 |
+
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
|
| 736 |
+
|
| 737 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 738 |
+
timestep = t.expand(latent_model_input.shape[0])
|
| 739 |
+
|
| 740 |
+
current_sampling_percent = i / len(timesteps)
|
| 741 |
+
|
| 742 |
+
EF_Net_states = []
|
| 743 |
+
if (EF_Net_guidance_start <= current_sampling_percent < EF_Net_guidance_end):
|
| 744 |
+
# extract EF_Net hidden state
|
| 745 |
+
EF_Net_states = self.EF_Net(
|
| 746 |
+
hidden_states=latent_image_input[:,:,0:16,:,:],
|
| 747 |
+
encoder_hidden_states=prompt_embeds,
|
| 748 |
+
image_rotary_emb=None,
|
| 749 |
+
EF_Net_states=latent_image_input[:,12::,:,:,:],
|
| 750 |
+
timestep=timestep,
|
| 751 |
+
return_dict=False,
|
| 752 |
+
)[0]
|
| 753 |
+
if isinstance(EF_Net_states, (tuple, list)):
|
| 754 |
+
EF_Net_states = [x.to(dtype=self.transformer.dtype) for x in EF_Net_states]
|
| 755 |
+
else:
|
| 756 |
+
EF_Net_states = EF_Net_states.to(dtype=self.transformer.dtype)
|
| 757 |
+
|
| 758 |
+
# predict noise model_output
|
| 759 |
+
|
| 760 |
+
noise_pred = self.transformer(
|
| 761 |
+
hidden_states=latent_model_input,
|
| 762 |
+
encoder_hidden_states=prompt_embeds,
|
| 763 |
+
timestep=timestep,
|
| 764 |
+
# ofs=ofs_emb,
|
| 765 |
+
image_rotary_emb=image_rotary_emb,
|
| 766 |
+
# attention_kwargs=attention_kwargs,
|
| 767 |
+
EF_Net_states=EF_Net_states,
|
| 768 |
+
EF_Net_weights=EF_Net_weights,
|
| 769 |
+
return_dict=False,
|
| 770 |
+
)[0]
|
| 771 |
+
noise_pred = noise_pred.float()
|
| 772 |
+
|
| 773 |
+
# perform guidance
|
| 774 |
+
if use_dynamic_cfg:
|
| 775 |
+
self._guidance_scale = 1 + guidance_scale * (
|
| 776 |
+
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
| 777 |
+
)
|
| 778 |
+
if do_classifier_free_guidance:
|
| 779 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 780 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 781 |
+
|
| 782 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 783 |
+
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
| 784 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 785 |
+
|
| 786 |
+
else:
|
| 787 |
+
latents, old_pred_original_sample = self.scheduler.step(
|
| 788 |
+
noise_pred,
|
| 789 |
+
old_pred_original_sample,
|
| 790 |
+
t,
|
| 791 |
+
timesteps[i - 1] if i > 0 else None,
|
| 792 |
+
latents,
|
| 793 |
+
**extra_step_kwargs,
|
| 794 |
+
return_dict=False,
|
| 795 |
+
)
|
| 796 |
+
latents = latents.to(prompt_embeds.dtype)
|
| 797 |
+
|
| 798 |
+
# call the callback, if provided
|
| 799 |
+
if callback_on_step_end is not None:
|
| 800 |
+
callback_kwargs = {}
|
| 801 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 802 |
+
callback_kwargs[k] = locals()[k]
|
| 803 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 804 |
+
|
| 805 |
+
latents = callback_outputs.pop("latents", latents)
|
| 806 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 807 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 808 |
+
|
| 809 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 810 |
+
progress_bar.update()
|
| 811 |
+
|
| 812 |
+
if not output_type == "latent":
|
| 813 |
+
video = self.decode_latents(latents.to(torch.bfloat16))
|
| 814 |
+
video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
| 815 |
+
else:
|
| 816 |
+
video = latents
|
| 817 |
+
|
| 818 |
+
# Offload all models
|
| 819 |
+
self.maybe_free_model_hooks()
|
| 820 |
+
|
| 821 |
+
if not return_dict:
|
| 822 |
+
return (video,)
|
| 823 |
+
|
| 824 |
+
return CogVideoXPipelineOutput(frames=video)
|
cogvideo_transformer.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from diffusers.utils import is_torch_version
|
| 6 |
+
from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXTransformer3DModel, Transformer2DModelOutput
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class CustomCogVideoXTransformer3DModel(CogVideoXTransformer3DModel):
|
| 10 |
+
def forward(
|
| 11 |
+
self,
|
| 12 |
+
hidden_states: torch.Tensor,
|
| 13 |
+
encoder_hidden_states: torch.Tensor,
|
| 14 |
+
timestep: Union[int, float, torch.LongTensor],
|
| 15 |
+
start_frame = None,
|
| 16 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 17 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 18 |
+
EF_Net_states: torch.Tensor = None,
|
| 19 |
+
EF_Net_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0,
|
| 20 |
+
return_dict: bool = True,
|
| 21 |
+
):
|
| 22 |
+
batch_size, num_frames, channels, height, width = hidden_states.shape
|
| 23 |
+
|
| 24 |
+
if start_frame is not None:
|
| 25 |
+
hidden_states = torch.cat([start_frame, hidden_states], dim=2)
|
| 26 |
+
# 1. Time embedding
|
| 27 |
+
timesteps = timestep
|
| 28 |
+
|
| 29 |
+
t_emb = self.time_proj(timesteps)
|
| 30 |
+
|
| 31 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 32 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 33 |
+
# there might be better ways to encapsulate this.
|
| 34 |
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
| 35 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# 2. Patch embedding
|
| 39 |
+
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
| 40 |
+
hidden_states = self.embedding_dropout(hidden_states)
|
| 41 |
+
|
| 42 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
| 43 |
+
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
| 44 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
| 45 |
+
|
| 46 |
+
# 3. Transformer blocks
|
| 47 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 48 |
+
#if self.training and self.gradient_checkpointing:
|
| 49 |
+
if self.gradient_checkpointing:
|
| 50 |
+
|
| 51 |
+
def create_custom_forward(module):
|
| 52 |
+
def custom_forward(*inputs):
|
| 53 |
+
return module(*inputs)
|
| 54 |
+
|
| 55 |
+
return custom_forward
|
| 56 |
+
|
| 57 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 58 |
+
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
| 59 |
+
create_custom_forward(block),
|
| 60 |
+
hidden_states,
|
| 61 |
+
encoder_hidden_states,
|
| 62 |
+
emb,
|
| 63 |
+
image_rotary_emb,
|
| 64 |
+
**ckpt_kwargs,
|
| 65 |
+
)
|
| 66 |
+
else:
|
| 67 |
+
hidden_states, encoder_hidden_states = block(
|
| 68 |
+
hidden_states=hidden_states,
|
| 69 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 70 |
+
temb=emb,
|
| 71 |
+
image_rotary_emb=image_rotary_emb,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
if (EF_Net_states is not None) and (i < len(EF_Net_states)):
|
| 75 |
+
EF_Net_states_block = EF_Net_states[i]
|
| 76 |
+
EF_Net_block_weight = 1.0
|
| 77 |
+
|
| 78 |
+
if isinstance(EF_Net_weights, (float, int)):
|
| 79 |
+
EF_Net_block_weight = EF_Net_weights
|
| 80 |
+
else:
|
| 81 |
+
EF_Net_block_weight = EF_Net_weights[i]
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
hidden_states = hidden_states + EF_Net_states_block * EF_Net_block_weight
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
if not self.config.use_rotary_positional_embeddings:
|
| 88 |
+
hidden_states = self.norm_final(hidden_states)
|
| 89 |
+
else:
|
| 90 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 91 |
+
hidden_states = self.norm_final(hidden_states)
|
| 92 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
| 93 |
+
|
| 94 |
+
# 4. Final block
|
| 95 |
+
hidden_states = self.norm_out(hidden_states, temb=emb)
|
| 96 |
+
hidden_states = self.proj_out(hidden_states)
|
| 97 |
+
|
| 98 |
+
# 5. Unpatchify
|
| 99 |
+
p = self.config.patch_size
|
| 100 |
+
p_t = self.config.patch_size_t
|
| 101 |
+
|
| 102 |
+
if p_t is None:
|
| 103 |
+
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
|
| 104 |
+
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
| 105 |
+
else:
|
| 106 |
+
output = hidden_states.reshape(
|
| 107 |
+
batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
|
| 108 |
+
)
|
| 109 |
+
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
|
| 110 |
+
|
| 111 |
+
if not return_dict:
|
| 112 |
+
return (output,)
|
| 113 |
+
return Transformer2DModelOutput(sample=output)
|
requirements.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
spaces>=0.29.3
|
| 2 |
+
safetensors>=0.4.5
|
| 3 |
+
spandrel>=0.4.0
|
| 4 |
+
tqdm>=4.66.5
|
| 5 |
+
scikit-video>=1.1.11
|
| 6 |
+
diffusers==0.32.0
|
| 7 |
+
transformers>=4.44.0
|
| 8 |
+
accelerate>=0.34.2
|
| 9 |
+
opencv-python>=4.10.0.84
|
| 10 |
+
sentencepiece>=0.2.0
|
| 11 |
+
numpy==1.26.0
|
| 12 |
+
torch>=2.4.0
|
| 13 |
+
torchvision>=0.19.0
|
| 14 |
+
gradio>=4.44.0
|
| 15 |
+
imageio>=2.34.2
|
| 16 |
+
imageio-ffmpeg>=0.5.1
|
| 17 |
+
openai>=1.45.0
|
| 18 |
+
moviepy>=1.0.3
|
| 19 |
+
pillow>=9.5.0
|
| 20 |
+
denku==0.0.51
|
| 21 |
+
decord==0.6.0
|