LiuhanChen commited on
Commit
a40eaa8
·
1 Parent(s): 0e5e0f5
cogvideo_EF_Net.py → EF_Net.py RENAMED
@@ -16,7 +16,7 @@ from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero,
16
  from diffusers.configuration_utils import ConfigMixin, register_to_config
17
 
18
 
19
- class CogVideoX_EF_Net(ModelMixin, ConfigMixin, PeftAdapterMixin):
20
  _supports_gradient_checkpointing = True
21
 
22
  @register_to_config
 
16
  from diffusers.configuration_utils import ConfigMixin, register_to_config
17
 
18
 
19
+ class EF_Net(ModelMixin, ConfigMixin, PeftAdapterMixin):
20
  _supports_gradient_checkpointing = True
21
 
22
  @register_to_config
Sci_Fi_frame_inbetweening.py CHANGED
@@ -31,9 +31,9 @@ from diffusers import (
31
  AutoencoderKLCogVideoX
32
  )
33
  from diffusers.utils import export_to_video, load_image
34
- from cogvideo_Sci_Fi_inbetweening_pipeline import CogVideoXEFNetInbetweeningPipeline
35
  from cogvideo_transformer import CustomCogVideoXTransformer3DModel
36
- from cogvideo_EF_Net import CogVideoX_EF_Net
37
  import cv2
38
  import os
39
  import sys
@@ -79,7 +79,7 @@ def generate_video(
79
  scheduler = CogVideoXDDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
80
 
81
  # 2. Load the pre-trained EF_Net
82
- EF_Net = CogVideoX_EF_Net(num_layers=4, downscale_coef=8, in_channels=2, num_attention_heads=48,).requires_grad_(False).eval()
83
  ckpt = torch.load(EF_Net_model_path, map_location='cpu', weights_only=False)
84
  EF_Net_state_dict = {}
85
  for name, params in ckpt['state_dict'].items():
 
31
  AutoencoderKLCogVideoX
32
  )
33
  from diffusers.utils import export_to_video, load_image
34
+ from Sci_Fi_inbetweening_pipeline import CogVideoXEFNetInbetweeningPipeline
35
  from cogvideo_transformer import CustomCogVideoXTransformer3DModel
36
+ from EF_Net import EF_Net
37
  import cv2
38
  import os
39
  import sys
 
79
  scheduler = CogVideoXDDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
80
 
81
  # 2. Load the pre-trained EF_Net
82
+ EF_Net = EF_Net(num_layers=4, downscale_coef=8, in_channels=2, num_attention_heads=48,).requires_grad_(False).eval()
83
  ckpt = torch.load(EF_Net_model_path, map_location='cpu', weights_only=False)
84
  EF_Net_state_dict = {}
85
  for name, params in ckpt['state_dict'].items():
cogvideo_Sci_Fi_inbetweening_pipeline.py → Sci_Fi_inbetweening_pipeline.py RENAMED
@@ -18,7 +18,7 @@ from diffusers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler, CogVideoXIm
18
  from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
19
  from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipelineOutput, CogVideoXLoraLoaderMixin
20
 
21
- from cogvideo_EF_Net import CogVideoX_EF_Net
22
  import torch
23
 
24
  def resize_for_crop(image, crop_h, crop_w):
@@ -177,7 +177,7 @@ class CogVideoXEFNetInbetweeningPipeline(DiffusionPipeline, CogVideoXLoraLoaderM
177
  text_encoder: T5EncoderModel,
178
  vae: AutoencoderKLCogVideoX,
179
  transformer: CogVideoXTransformer3DModel,
180
- EF_Net: CogVideoX_EF_Net,
181
  scheduler: CogVideoXDDIMScheduler,
182
  ):
183
  super().__init__()
 
18
  from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
19
  from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipelineOutput, CogVideoXLoraLoaderMixin
20
 
21
+ from EF_Net import EF_Net
22
  import torch
23
 
24
  def resize_for_crop(image, crop_h, crop_w):
 
177
  text_encoder: T5EncoderModel,
178
  vae: AutoencoderKLCogVideoX,
179
  transformer: CogVideoXTransformer3DModel,
180
+ EF_Net: EF_Net,
181
  scheduler: CogVideoXDDIMScheduler,
182
  ):
183
  super().__init__()