Spaces:
Sleeping
Sleeping
| import logging | |
| from typing import Any | |
| import numpy as np | |
| import rerun as rr | |
| from datasets import load_dataset | |
| from PIL import Image | |
| from tqdm import tqdm | |
| logger = logging.getLogger(__name__) | |
| def to_rerun(column_name: str, value: Any) -> Any: | |
| """Do our best to interpret the value and convert it to a Rerun-compatible archetype.""" | |
| if isinstance(value, Image.Image): | |
| if "depth" in column_name: | |
| return rr.DepthImage(value) | |
| else: | |
| return rr.Image(value) | |
| elif isinstance(value, np.ndarray): | |
| return rr.Tensor(value) | |
| elif isinstance(value, list): | |
| if isinstance(value[0], float): | |
| return rr.BarChart(value) | |
| else: | |
| return rr.TextDocument(str(value)) # Fallback to text | |
| elif isinstance(value, float) or isinstance(value, int): | |
| return rr.Scalar(value) | |
| else: | |
| return rr.TextDocument(str(value)) # Fallback to text | |
| def log_dataset_to_rerun(dataset: Any) -> None: | |
| # Special time-like columns for LeRobot datasets (https://huggingface.co/datasets/lerobot/): | |
| TIME_LIKE = {"index", "frame_id", "timestamp"} | |
| # Ignore these columns (again, LeRobot-specific): | |
| IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"} | |
| for row in tqdm(dataset): | |
| # Handle time-like columns first, since they set a state (time is an index in Rerun): | |
| for column_name in TIME_LIKE: | |
| if column_name in row: | |
| cell = row[column_name] | |
| if isinstance(cell, int): | |
| rr.set_time_sequence(column_name, cell) | |
| elif isinstance(cell, float): | |
| rr.set_time_seconds(column_name, cell) # assume seconds | |
| else: | |
| print(f"Unknown time-like column {column_name} with value {cell}") | |
| # Now log actual data columns: | |
| for column_name, cell in row.items(): | |
| if column_name in TIME_LIKE or column_name in IGNORE: | |
| continue | |
| rr.log(column_name, to_rerun(column_name, cell)) | |