Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
-
import re
|
| 3 |
-
import functools
|
| 4 |
-
from functools import partial
|
| 5 |
|
| 6 |
-
import requests
|
| 7 |
-
import pandas as pd
|
| 8 |
|
| 9 |
import torch
|
| 10 |
import gradio as gr
|
|
@@ -18,8 +18,6 @@ from utils import speech_to_text as stt
|
|
| 18 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 19 |
device = 0 if torch.cuda.is_available() else -1
|
| 20 |
|
| 21 |
-
# display if the sentiment value is above these thresholds
|
| 22 |
-
#thresholds = {"joy": 0.99,"anger": 0.95,"surprise": 0.95,"sadness": 0.98,"fear": 0.95,"love": 0.99,}
|
| 23 |
color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}
|
| 24 |
|
| 25 |
# Audio components
|
|
@@ -63,9 +61,7 @@ def sentiment(diarized, emotion_pipeline):
|
|
| 63 |
if "Customer" in speaker_id:
|
| 64 |
outputs = emotion_pipeline(sentences)
|
| 65 |
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
| 66 |
-
# if o["score"] > thresholds[o["label"]]:
|
| 67 |
customer_sentiments.append((t, o["label"]))
|
| 68 |
-
|
| 69 |
return customer_sentiments
|
| 70 |
|
| 71 |
EXAMPLES = [["Customer_Support_Call.wav"]]
|
|
@@ -95,14 +91,9 @@ with gr.Blocks() as demo:
|
|
| 95 |
cache_examples=True
|
| 96 |
)
|
| 97 |
# when example button is clicked, convert audio file to text and diarize
|
| 98 |
-
btn.click(
|
| 99 |
-
fn=speech_to_text,
|
| 100 |
-
inputs=audio,
|
| 101 |
-
outputs=diarized,
|
| 102 |
-
)
|
| 103 |
# when summarize checkboxes are changed, create summary
|
| 104 |
sum_btn.click(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized], outputs=summary)
|
| 105 |
-
|
| 106 |
# when sentiment button clicked, display highlighted text and plot
|
| 107 |
sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed])
|
| 108 |
|
|
|
|
| 1 |
import os
|
| 2 |
+
#import re
|
| 3 |
+
#import functools
|
| 4 |
+
#from functools import partial
|
| 5 |
|
| 6 |
+
#import requests
|
| 7 |
+
#import pandas as pd
|
| 8 |
|
| 9 |
import torch
|
| 10 |
import gradio as gr
|
|
|
|
| 18 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 19 |
device = 0 if torch.cuda.is_available() else -1
|
| 20 |
|
|
|
|
|
|
|
| 21 |
color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}
|
| 22 |
|
| 23 |
# Audio components
|
|
|
|
| 61 |
if "Customer" in speaker_id:
|
| 62 |
outputs = emotion_pipeline(sentences)
|
| 63 |
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
|
|
|
| 64 |
customer_sentiments.append((t, o["label"]))
|
|
|
|
| 65 |
return customer_sentiments
|
| 66 |
|
| 67 |
EXAMPLES = [["Customer_Support_Call.wav"]]
|
|
|
|
| 91 |
cache_examples=True
|
| 92 |
)
|
| 93 |
# when example button is clicked, convert audio file to text and diarize
|
| 94 |
+
btn.click(fn=speech_to_text, inputs=audio, outputs=diarized)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
# when summarize checkboxes are changed, create summary
|
| 96 |
sum_btn.click(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized], outputs=summary)
|
|
|
|
| 97 |
# when sentiment button clicked, display highlighted text and plot
|
| 98 |
sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed])
|
| 99 |
|