Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
|
@@ -12,6 +13,9 @@ model = torch.hub.load('pytorch/vision:v0.9.0', 'densenet121', pretrained=True)
|
|
| 12 |
# model = torch.hub.load('pytorch/vision:v0.9.0', 'densenet161', pretrained=True)
|
| 13 |
model.eval()
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
def inference(input_image):
|
| 16 |
|
| 17 |
preprocess = transforms.Compose([
|
|
@@ -33,8 +37,7 @@ def inference(input_image):
|
|
| 33 |
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
|
| 34 |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
| 35 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
| 36 |
-
|
| 37 |
-
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
|
| 38 |
# Read the categories
|
| 39 |
with open("imagenet_classes.txt", "r") as f:
|
| 40 |
categories = [s.strip() for s in f.readlines()]
|
|
|
|
| 1 |
+
import os
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
from PIL import Image
|
|
|
|
| 13 |
# model = torch.hub.load('pytorch/vision:v0.9.0', 'densenet161', pretrained=True)
|
| 14 |
model.eval()
|
| 15 |
|
| 16 |
+
# Download ImageNet labels
|
| 17 |
+
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
|
| 18 |
+
|
| 19 |
def inference(input_image):
|
| 20 |
|
| 21 |
preprocess = transforms.Compose([
|
|
|
|
| 37 |
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
|
| 38 |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
| 39 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
| 40 |
+
|
|
|
|
| 41 |
# Read the categories
|
| 42 |
with open("imagenet_classes.txt", "r") as f:
|
| 43 |
categories = [s.strip() for s in f.readlines()]
|