Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -11,9 +11,7 @@ from typing import Iterable
|
|
| 11 |
import gradio as gr
|
| 12 |
import spaces
|
| 13 |
import torch
|
| 14 |
-
import numpy as np
|
| 15 |
from PIL import Image
|
| 16 |
-
import cv2
|
| 17 |
|
| 18 |
from transformers import (
|
| 19 |
Qwen2_5_VLForConditionalGeneration,
|
|
@@ -142,27 +140,6 @@ model_o = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 142 |
torch_dtype=torch.float16
|
| 143 |
).to(device).eval()
|
| 144 |
|
| 145 |
-
def downsample_video(video_path):
|
| 146 |
-
"""
|
| 147 |
-
Downsamples the video to evenly spaced frames.
|
| 148 |
-
Each frame is returned as a PIL image along with its timestamp.
|
| 149 |
-
"""
|
| 150 |
-
vidcap = cv2.VideoCapture(video_path)
|
| 151 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 152 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 153 |
-
frames = []
|
| 154 |
-
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
| 155 |
-
for i in frame_indices:
|
| 156 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 157 |
-
success, image = vidcap.read()
|
| 158 |
-
if success:
|
| 159 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 160 |
-
pil_image = Image.fromarray(image)
|
| 161 |
-
timestamp = round(i / fps, 2)
|
| 162 |
-
frames.append((pil_image, timestamp))
|
| 163 |
-
vidcap.release()
|
| 164 |
-
return frames
|
| 165 |
-
|
| 166 |
@spaces.GPU
|
| 167 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 168 |
max_new_tokens: int = 1024,
|
|
@@ -217,72 +194,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 217 |
time.sleep(0.01)
|
| 218 |
yield buffer, buffer
|
| 219 |
|
| 220 |
-
|
| 221 |
-
def generate_video(model_name: str, text: str, video_path: str,
|
| 222 |
-
max_new_tokens: int = 1024,
|
| 223 |
-
temperature: float = 0.6,
|
| 224 |
-
top_p: float = 0.9,
|
| 225 |
-
top_k: int = 50,
|
| 226 |
-
repetition_penalty: float = 1.2):
|
| 227 |
-
"""
|
| 228 |
-
Generates responses using the selected model for video input.
|
| 229 |
-
Yields raw text and Markdown-formatted text.
|
| 230 |
-
"""
|
| 231 |
-
if model_name == "docscopeOCR-7B-050425-exp":
|
| 232 |
-
processor, model = processor_m, model_m
|
| 233 |
-
elif model_name == "coreOCR-7B-050325-preview":
|
| 234 |
-
processor, model = processor_x, model_x
|
| 235 |
-
elif model_name == "MonkeyOCR-Recognition":
|
| 236 |
-
processor, model = processor_g, model_g
|
| 237 |
-
elif model_name == "Camel-Doc-OCR-080125(v2)":
|
| 238 |
-
processor, model = processor_o, model_o
|
| 239 |
-
else:
|
| 240 |
-
yield "Invalid model selected.", "Invalid model selected."
|
| 241 |
-
return
|
| 242 |
-
|
| 243 |
-
if video_path is None:
|
| 244 |
-
yield "Please upload a video.", "Please upload a video."
|
| 245 |
-
return
|
| 246 |
-
|
| 247 |
-
frames = downsample_video(video_path)
|
| 248 |
-
messages = [
|
| 249 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 250 |
-
{"role": "user", "content": [{"type": "text", "text": text}]}
|
| 251 |
-
]
|
| 252 |
-
for frame in frames:
|
| 253 |
-
image, timestamp = frame
|
| 254 |
-
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 255 |
-
messages[1]["content"].append({"type": "image", "image": image})
|
| 256 |
-
inputs = processor.apply_chat_template(
|
| 257 |
-
messages,
|
| 258 |
-
tokenize=True,
|
| 259 |
-
add_generation_prompt=True,
|
| 260 |
-
return_dict=True,
|
| 261 |
-
return_tensors="pt",
|
| 262 |
-
truncation=True,
|
| 263 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 264 |
-
).to(device)
|
| 265 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 266 |
-
generation_kwargs = {
|
| 267 |
-
**inputs,
|
| 268 |
-
"streamer": streamer,
|
| 269 |
-
"max_new_tokens": max_new_tokens,
|
| 270 |
-
"do_sample": True,
|
| 271 |
-
"temperature": temperature,
|
| 272 |
-
"top_p": top_p,
|
| 273 |
-
"top_k": top_k,
|
| 274 |
-
"repetition_penalty": repetition_penalty,
|
| 275 |
-
}
|
| 276 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 277 |
-
thread.start()
|
| 278 |
-
buffer = ""
|
| 279 |
-
for new_text in streamer:
|
| 280 |
-
buffer += new_text
|
| 281 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 282 |
-
time.sleep(0.01)
|
| 283 |
-
yield buffer, buffer
|
| 284 |
-
|
| 285 |
-
# Define examples for image and video inference
|
| 286 |
image_examples = [
|
| 287 |
["Reconstruct the content [table] as it is.", "images/doc.jpg"],
|
| 288 |
["Reconstruct the doc [table] as it is.", "images/zh.png"],
|
|
@@ -292,11 +204,6 @@ image_examples = [
|
|
| 292 |
["OCR the image", "images/image1.png"]
|
| 293 |
]
|
| 294 |
|
| 295 |
-
video_examples = [
|
| 296 |
-
["Explain the video in detail", "videos/2.mp4"],
|
| 297 |
-
["Explain the video in detail", "videos/1.mp4"]
|
| 298 |
-
]
|
| 299 |
-
|
| 300 |
css = """
|
| 301 |
#main-title h1 {
|
| 302 |
font-size: 2.3em !important;
|
|
@@ -311,17 +218,11 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 311 |
gr.Markdown("# **core [OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations)**", elem_id="main-title")
|
| 312 |
with gr.Row():
|
| 313 |
with gr.Column(scale=2):
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
|
| 320 |
-
with gr.TabItem("Video Inference"):
|
| 321 |
-
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 322 |
-
video_upload = gr.Video(label="Upload Video", height=290)
|
| 323 |
-
video_submit = gr.Button("Submit", variant="primary")
|
| 324 |
-
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
|
| 325 |
with gr.Accordion("Advanced options", open=False):
|
| 326 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 327 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
|
@@ -346,11 +247,6 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 346 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 347 |
outputs=[output, markdown_output]
|
| 348 |
)
|
| 349 |
-
video_submit.click(
|
| 350 |
-
fn=generate_video,
|
| 351 |
-
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 352 |
-
outputs=[output, markdown_output]
|
| 353 |
-
)
|
| 354 |
|
| 355 |
if __name__ == "__main__":
|
| 356 |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
import spaces
|
| 13 |
import torch
|
|
|
|
| 14 |
from PIL import Image
|
|
|
|
| 15 |
|
| 16 |
from transformers import (
|
| 17 |
Qwen2_5_VLForConditionalGeneration,
|
|
|
|
| 140 |
torch_dtype=torch.float16
|
| 141 |
).to(device).eval()
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
@spaces.GPU
|
| 144 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 145 |
max_new_tokens: int = 1024,
|
|
|
|
| 194 |
time.sleep(0.01)
|
| 195 |
yield buffer, buffer
|
| 196 |
|
| 197 |
+
# Define examples for image inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
image_examples = [
|
| 199 |
["Reconstruct the content [table] as it is.", "images/doc.jpg"],
|
| 200 |
["Reconstruct the doc [table] as it is.", "images/zh.png"],
|
|
|
|
| 204 |
["OCR the image", "images/image1.png"]
|
| 205 |
]
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
css = """
|
| 208 |
#main-title h1 {
|
| 209 |
font-size: 2.3em !important;
|
|
|
|
| 218 |
gr.Markdown("# **core [OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations)**", elem_id="main-title")
|
| 219 |
with gr.Row():
|
| 220 |
with gr.Column(scale=2):
|
| 221 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 222 |
+
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 223 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 224 |
+
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
|
| 225 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
with gr.Accordion("Advanced options", open=False):
|
| 227 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 228 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
|
|
|
| 247 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 248 |
outputs=[output, markdown_output]
|
| 249 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
if __name__ == "__main__":
|
| 252 |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|