feat: merge baseline and add other format metadata
Browse files- article_base_train.py +186 -0
- article_base_train_no_qlora_test.py +0 -85
- article_base_train_test.py +0 -93
article_base_train.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, time, math
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import Dataset
|
| 4 |
+
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from peft import get_peft_model, LoraConfig
|
| 8 |
+
import argparse
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Function to load custom dataset from CSV
|
| 12 |
+
def load_custom_dataset_from_csv(csv_file, image_folder):
|
| 13 |
+
# Load CSV data using pandas
|
| 14 |
+
data = pd.read_csv(csv_file)
|
| 15 |
+
|
| 16 |
+
# Prepare dataset format for Hugging Face
|
| 17 |
+
questions = data['question'].tolist()
|
| 18 |
+
images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
|
| 19 |
+
answers = data['answer'].tolist()
|
| 20 |
+
|
| 21 |
+
# Create a Hugging Face dataset from the loaded CSV
|
| 22 |
+
return Dataset.from_dict({
|
| 23 |
+
'question': questions,
|
| 24 |
+
'image': images,
|
| 25 |
+
'answer': answers
|
| 26 |
+
})
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Function to load custom dataset from Parquet
|
| 30 |
+
def load_custom_dataset_from_parquet(parquet_file, image_folder):
|
| 31 |
+
# Load Parquet data using pandas
|
| 32 |
+
data = pd.read_parquet(parquet_file)
|
| 33 |
+
|
| 34 |
+
# Prepare dataset format for Hugging Face
|
| 35 |
+
questions = data['question'].tolist()
|
| 36 |
+
images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
|
| 37 |
+
answers = data['answer'].tolist()
|
| 38 |
+
|
| 39 |
+
# Create a Hugging Face dataset from the loaded Parquet
|
| 40 |
+
return Dataset.from_dict({
|
| 41 |
+
'question': questions,
|
| 42 |
+
'image': images,
|
| 43 |
+
'answer': answers
|
| 44 |
+
})
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Choose the appropriate loader based on metadata_type argument
|
| 48 |
+
def load_dataset_by_type(metadata_type, dataset_dir, image_folder):
|
| 49 |
+
if metadata_type == "csv":
|
| 50 |
+
return load_custom_dataset_from_csv(
|
| 51 |
+
os.path.join(dataset_dir, 'train_samples.csv'),
|
| 52 |
+
image_folder
|
| 53 |
+
)
|
| 54 |
+
elif metadata_type == "parquet":
|
| 55 |
+
return load_custom_dataset_from_parquet(
|
| 56 |
+
os.path.join(dataset_dir, 'train.parquet'),
|
| 57 |
+
image_folder
|
| 58 |
+
)
|
| 59 |
+
else:
|
| 60 |
+
raise ValueError("Unsupported metadata type. Use 'csv' or 'parquet'.")
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def load_model_and_args(use_qlora, model_id, device, output_dir):
|
| 64 |
+
if use_qlora:
|
| 65 |
+
bnb_config = BitsAndBytesConfig(
|
| 66 |
+
load_in_4bit=True,
|
| 67 |
+
bnb_4bit_quant_type="nf4",
|
| 68 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 69 |
+
)
|
| 70 |
+
lora_config = LoraConfig(
|
| 71 |
+
r=8,
|
| 72 |
+
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
|
| 73 |
+
task_type="CAUSAL_LM"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map={"": 0})
|
| 77 |
+
model = get_peft_model(model, lora_config)
|
| 78 |
+
model.print_trainable_parameters()
|
| 79 |
+
|
| 80 |
+
# TODO: Customize training setting
|
| 81 |
+
args = TrainingArguments(
|
| 82 |
+
output_dir=os.path.join(output_dir, f"{math.floor(time.time())}"),
|
| 83 |
+
num_train_epochs=2,
|
| 84 |
+
remove_unused_columns=False,
|
| 85 |
+
per_device_train_batch_size=1,
|
| 86 |
+
gradient_accumulation_steps=4,
|
| 87 |
+
warmup_steps=2,
|
| 88 |
+
learning_rate=2e-5,
|
| 89 |
+
weight_decay=1e-6,
|
| 90 |
+
logging_steps=100,
|
| 91 |
+
optim="adamw_hf",
|
| 92 |
+
save_strategy="steps",
|
| 93 |
+
save_steps=1000,
|
| 94 |
+
save_total_limit=1,
|
| 95 |
+
bf16=True,
|
| 96 |
+
report_to=["tensorboard"],
|
| 97 |
+
dataloader_pin_memory=False
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
return model, args
|
| 101 |
+
else:
|
| 102 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
|
| 103 |
+
for param in model.vision_tower.parameters():
|
| 104 |
+
param.requires_grad = False
|
| 105 |
+
|
| 106 |
+
for param in model.multi_modal_projector.parameters():
|
| 107 |
+
param.requires_grad = True
|
| 108 |
+
|
| 109 |
+
# TODO: Customize training setting
|
| 110 |
+
args = TrainingArguments(
|
| 111 |
+
output_dir=os.path.join(output_dir, f"{math.floor(time.time())}"),
|
| 112 |
+
num_train_epochs=2,
|
| 113 |
+
remove_unused_columns=False,
|
| 114 |
+
per_device_train_batch_size=4,
|
| 115 |
+
gradient_accumulation_steps=4,
|
| 116 |
+
warmup_steps=2,
|
| 117 |
+
learning_rate=2e-5,
|
| 118 |
+
weight_decay=1e-6,
|
| 119 |
+
logging_steps=100,
|
| 120 |
+
optim="paged_adamw_8bit",
|
| 121 |
+
save_strategy="steps",
|
| 122 |
+
save_steps=1000,
|
| 123 |
+
save_total_limit=1,
|
| 124 |
+
bf16=True,
|
| 125 |
+
report_to=["tensorboard"],
|
| 126 |
+
dataloader_pin_memory=False
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
return model, args
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# Main training function
|
| 133 |
+
def main(args):
|
| 134 |
+
dataset_dir = args.dataset_dir
|
| 135 |
+
model_id = args.model_id
|
| 136 |
+
output_dir = args.output_dir
|
| 137 |
+
metadata_type = args.metadata_type
|
| 138 |
+
|
| 139 |
+
# Load custom datasetsㄴ
|
| 140 |
+
# dataset = load_custom_dataset_from_csv(
|
| 141 |
+
# os.path.join(dataset_dir, 'train_samples.csv'),
|
| 142 |
+
# os.path.join(dataset_dir, 'images/train')) # TODO: change to appropriate path
|
| 143 |
+
dataset = load_dataset_by_type(metadata_type, dataset_dir, os.path.join(dataset_dir, 'images/train'))
|
| 144 |
+
train_val_split = dataset.train_test_split(test_size=0.1)
|
| 145 |
+
|
| 146 |
+
train_ds = train_val_split['train']
|
| 147 |
+
val_ds = train_val_split['test']
|
| 148 |
+
|
| 149 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
| 150 |
+
device = "cuda"
|
| 151 |
+
|
| 152 |
+
model, args = load_model_and_args(args.use_qlora, model_id, device, output_dir)
|
| 153 |
+
|
| 154 |
+
# Custom collate function
|
| 155 |
+
def collate_fn(examples):
|
| 156 |
+
texts = [example["question"] for example in examples]
|
| 157 |
+
labels = [example['answer'] for example in examples]
|
| 158 |
+
images = [Image.open(example['image']).convert("RGB") for example in examples]
|
| 159 |
+
tokens = processor(text=texts, images=images, suffix=labels, return_tensors="pt", padding="longest")
|
| 160 |
+
tokens = tokens.to(torch.bfloat16).to(device)
|
| 161 |
+
return tokens
|
| 162 |
+
|
| 163 |
+
trainer = Trainer(
|
| 164 |
+
model=model,
|
| 165 |
+
train_dataset=train_ds,
|
| 166 |
+
eval_dataset=val_ds,
|
| 167 |
+
data_collator=collate_fn,
|
| 168 |
+
args=args
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
trainer.train()
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def parse_args():
|
| 175 |
+
parser = argparse.ArgumentParser(description="Train a model with custom dataset")
|
| 176 |
+
parser.add_argument('--dataset_dir', type=str, default='./dataset', help='Path to the folder containing the images')
|
| 177 |
+
parser.add_argument('--model_id', type=str, default='google/paligemma-3b-pt-224', help='Model ID to use for training')
|
| 178 |
+
parser.add_argument('--output_dir', type=str, default='./output', help='Directory to save the output')
|
| 179 |
+
parser.add_argument('--use_qlora', type=bool, default=False, help='Use QLoRA for training')
|
| 180 |
+
parser.add_argument('--metadata_type', type=str, default='parquet', choices=['csv', 'parquet'], help='Metadata format (csv or parquet)')
|
| 181 |
+
return parser.parse_args()
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
if __name__ == "__main__":
|
| 185 |
+
args = parse_args()
|
| 186 |
+
main(args)
|
article_base_train_no_qlora_test.py
DELETED
|
@@ -1,85 +0,0 @@
|
|
| 1 |
-
import os, time, math
|
| 2 |
-
import pandas as pd
|
| 3 |
-
from datasets import Dataset
|
| 4 |
-
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
|
| 5 |
-
import torch
|
| 6 |
-
from PIL import Image
|
| 7 |
-
from peft import get_peft_model, LoraConfig
|
| 8 |
-
|
| 9 |
-
# Function to load custom dataset from CSV
|
| 10 |
-
def load_custom_dataset_from_csv(csv_file, image_folder):
|
| 11 |
-
# Load CSV data using pandas
|
| 12 |
-
data = pd.read_csv(csv_file)
|
| 13 |
-
|
| 14 |
-
# Prepare dataset format for Hugging Face
|
| 15 |
-
questions = data['question'].tolist()
|
| 16 |
-
images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
|
| 17 |
-
answers = data['answer'].tolist()
|
| 18 |
-
|
| 19 |
-
# Create a Hugging Face dataset from the loaded CSV
|
| 20 |
-
return Dataset.from_dict({
|
| 21 |
-
'question': questions,
|
| 22 |
-
'image': images,
|
| 23 |
-
'answer': answers
|
| 24 |
-
})
|
| 25 |
-
|
| 26 |
-
# Main training function
|
| 27 |
-
def main():
|
| 28 |
-
# Load custom datasets
|
| 29 |
-
dataset = load_custom_dataset_from_csv('dataset/train_samples.csv', 'dataset/images/train')
|
| 30 |
-
train_val_split = dataset.train_test_split(test_size=0.1)
|
| 31 |
-
|
| 32 |
-
train_ds = train_val_split['train']
|
| 33 |
-
val_ds = train_val_split['test']
|
| 34 |
-
|
| 35 |
-
model_id = "google/paligemma-3b-pt-224"
|
| 36 |
-
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
| 37 |
-
device = "cuda"
|
| 38 |
-
|
| 39 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
|
| 40 |
-
for param in model.vision_tower.parameters():
|
| 41 |
-
param.requires_grad = False
|
| 42 |
-
|
| 43 |
-
for param in model.multi_modal_projector.parameters():
|
| 44 |
-
param.requires_grad = True
|
| 45 |
-
|
| 46 |
-
args = TrainingArguments(
|
| 47 |
-
output_dir=f"./output/{math.floor(time.time())}",
|
| 48 |
-
num_train_epochs=2,
|
| 49 |
-
remove_unused_columns=False,
|
| 50 |
-
per_device_train_batch_size=1,
|
| 51 |
-
gradient_accumulation_steps=4,
|
| 52 |
-
warmup_steps=2,
|
| 53 |
-
learning_rate=2e-5,
|
| 54 |
-
weight_decay=1e-6,
|
| 55 |
-
logging_steps=100,
|
| 56 |
-
optim="adamw_hf",
|
| 57 |
-
save_strategy="steps",
|
| 58 |
-
save_steps=1000,
|
| 59 |
-
save_total_limit=1,
|
| 60 |
-
bf16=True,
|
| 61 |
-
report_to=["tensorboard"],
|
| 62 |
-
dataloader_pin_memory=False
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
# Custom collate function
|
| 66 |
-
def collate_fn(examples):
|
| 67 |
-
texts = [example["question"] for example in examples]
|
| 68 |
-
labels = [example['answer'] for example in examples]
|
| 69 |
-
images = [Image.open(example['image']).convert("RGB") for example in examples]
|
| 70 |
-
tokens = processor(text=texts, images=images, suffix=labels, return_tensors="pt", padding="longest")
|
| 71 |
-
tokens = tokens.to(torch.bfloat16).to(device)
|
| 72 |
-
return tokens
|
| 73 |
-
|
| 74 |
-
trainer = Trainer(
|
| 75 |
-
model=model,
|
| 76 |
-
train_dataset=train_ds,
|
| 77 |
-
eval_dataset=val_ds,
|
| 78 |
-
data_collator=collate_fn,
|
| 79 |
-
args=args
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
trainer.train()
|
| 83 |
-
|
| 84 |
-
if __name__ == "__main__":
|
| 85 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
article_base_train_test.py
DELETED
|
@@ -1,93 +0,0 @@
|
|
| 1 |
-
import os, time, math
|
| 2 |
-
import pandas as pd
|
| 3 |
-
from datasets import Dataset
|
| 4 |
-
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
|
| 5 |
-
import torch
|
| 6 |
-
from PIL import Image
|
| 7 |
-
from peft import get_peft_model, LoraConfig
|
| 8 |
-
|
| 9 |
-
# Function to load custom dataset from CSV
|
| 10 |
-
def load_custom_dataset_from_csv(csv_file, image_folder):
|
| 11 |
-
# Load CSV data using pandas
|
| 12 |
-
data = pd.read_csv(csv_file)
|
| 13 |
-
|
| 14 |
-
# Prepare dataset format for Hugging Face
|
| 15 |
-
questions = data['question'].tolist()
|
| 16 |
-
images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
|
| 17 |
-
answers = data['answer'].tolist()
|
| 18 |
-
|
| 19 |
-
# Create a Hugging Face dataset from the loaded CSV
|
| 20 |
-
return Dataset.from_dict({
|
| 21 |
-
'question': questions,
|
| 22 |
-
'image': images,
|
| 23 |
-
'answer': answers
|
| 24 |
-
})
|
| 25 |
-
|
| 26 |
-
# Main training function
|
| 27 |
-
def main():
|
| 28 |
-
# Load custom datasets
|
| 29 |
-
dataset = load_custom_dataset_from_csv('dataset/train_samples.csv', 'dataset/images/train')
|
| 30 |
-
train_val_split = dataset.train_test_split(test_size=0.1)
|
| 31 |
-
|
| 32 |
-
train_ds = train_val_split['train']
|
| 33 |
-
val_ds = train_val_split['test']
|
| 34 |
-
|
| 35 |
-
model_id = "google/paligemma-3b-pt-224"
|
| 36 |
-
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
| 37 |
-
device = "cuda"
|
| 38 |
-
|
| 39 |
-
bnb_config = BitsAndBytesConfig(
|
| 40 |
-
load_in_4bit=True,
|
| 41 |
-
bnb_4bit_quant_type="nf4",
|
| 42 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
| 43 |
-
)
|
| 44 |
-
lora_config = LoraConfig(
|
| 45 |
-
r=8,
|
| 46 |
-
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
|
| 47 |
-
task_type="CAUSAL_LM"
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map={"": 0})
|
| 51 |
-
model = get_peft_model(model, lora_config)
|
| 52 |
-
model.print_trainable_parameters()
|
| 53 |
-
|
| 54 |
-
args = TrainingArguments(
|
| 55 |
-
output_dir=f"./output/{math.floor(time.time())}",
|
| 56 |
-
num_train_epochs=2,
|
| 57 |
-
remove_unused_columns=False,
|
| 58 |
-
per_device_train_batch_size=4,
|
| 59 |
-
gradient_accumulation_steps=4,
|
| 60 |
-
warmup_steps=2,
|
| 61 |
-
learning_rate=2e-5,
|
| 62 |
-
weight_decay=1e-6,
|
| 63 |
-
logging_steps=100,
|
| 64 |
-
optim="paged_adamw_8bit",
|
| 65 |
-
save_strategy="steps",
|
| 66 |
-
save_steps=1000,
|
| 67 |
-
save_total_limit=1,
|
| 68 |
-
bf16=True,
|
| 69 |
-
report_to=["tensorboard"],
|
| 70 |
-
dataloader_pin_memory=False
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
# Custom collate function
|
| 74 |
-
def collate_fn(examples):
|
| 75 |
-
texts = [example["question"] for example in examples]
|
| 76 |
-
labels = [example['answer'] for example in examples]
|
| 77 |
-
images = [Image.open(example['image']).convert("RGB") for example in examples]
|
| 78 |
-
tokens = processor(text=texts, images=images, suffix=labels, return_tensors="pt", padding="longest")
|
| 79 |
-
tokens = tokens.to(torch.bfloat16).to(device)
|
| 80 |
-
return tokens
|
| 81 |
-
|
| 82 |
-
trainer = Trainer(
|
| 83 |
-
model=model,
|
| 84 |
-
train_dataset=train_ds,
|
| 85 |
-
eval_dataset=val_ds,
|
| 86 |
-
data_collator=collate_fn,
|
| 87 |
-
args=args
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
trainer.train()
|
| 91 |
-
|
| 92 |
-
if __name__ == "__main__":
|
| 93 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|