Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| from io import BytesIO | |
| def convert_file(input_file, conversion_type): | |
| # Check if a file was uploaded | |
| if input_file is None: | |
| return None, "Please upload a file." | |
| # Read the file content | |
| try: | |
| # Try reading from file-like object | |
| file_bytes = input_file.read() | |
| file_name = input_file.name | |
| except AttributeError: | |
| # If there's an AttributeError, treat input_file as a file path | |
| file_name = input_file | |
| with open(file_name, "rb") as f: | |
| file_bytes = f.read() | |
| file_extension = file_name.lower().split('.')[-1] | |
| df = None | |
| output_file = None | |
| converted_format = None | |
| try: | |
| # Conversion: CSV to Parquet | |
| if conversion_type == "CSV to Parquet": | |
| if file_extension != "csv": | |
| return None, "For CSV to Parquet conversion, please upload a CSV file." | |
| # Set UTF-8 as default encoding and try others if needed | |
| encodings_to_try = ['utf-8', 'latin1', 'iso-8859-1', 'cp1252'] | |
| encoding = 'utf-8' # Set UTF-8 as default encoding | |
| # Try UTF-8 first, then other encodings if it fails | |
| try: | |
| df = pd.read_csv(BytesIO(file_bytes), encoding=encoding) | |
| except UnicodeDecodeError: | |
| # Try other encodings if UTF-8 fails | |
| for enc in encodings_to_try[1:]: # Try remaining encodings except utf-8 | |
| try: | |
| df = pd.read_csv(BytesIO(file_bytes), encoding=enc) | |
| encoding = enc | |
| break | |
| except UnicodeDecodeError: | |
| continue | |
| except Exception as e: | |
| return None, f"Error reading CSV: {str(e)}" | |
| except Exception as e: | |
| return None, f"Error reading CSV: {str(e)}" | |
| if df is None: | |
| return None, "Failed to read CSV with any of the common encodings. Your file might use a rare encoding." | |
| output_file = "output.parquet" | |
| df.to_parquet(output_file, index=False) | |
| converted_format = "Parquet" | |
| # Conversion: Parquet to CSV | |
| elif conversion_type == "Parquet to CSV": | |
| if file_extension != "parquet": | |
| return None, "For Parquet to CSV conversion, please upload a Parquet file." | |
| df = pd.read_parquet(BytesIO(file_bytes)) | |
| output_file = "output.csv" | |
| df.to_csv(output_file, index=False, encoding='utf-8') | |
| converted_format = "CSV" | |
| else: | |
| return None, "Invalid conversion type selected." | |
| # Generate a preview of the top 10 rows | |
| preview = df.head(10).to_string(index=False) | |
| info_message = ( | |
| f"Input file: {file_name}\n" | |
| f"Converted file format: {converted_format}\n" | |
| ) | |
| if conversion_type == "CSV to Parquet": | |
| info_message += f"Used encoding: {encoding}\n" | |
| info_message += f"\nPreview (Top 10 Rows):\n{preview}" | |
| return output_file, info_message | |
| except Exception as e: | |
| return None, f"Error during conversion: {str(e)}" | |
| # λͺ¨λνκ³ μΈλ ¨λ μ€νμΌμ μν μ¬μ©μ μ μ CSS | |
| custom_css = """ | |
| body { | |
| background-color: #f4f4f4; | |
| font-family: 'Helvetica Neue', Arial, sans-serif; | |
| } | |
| .gradio-container { | |
| max-width: 900px; | |
| margin: 40px auto; | |
| padding: 20px; | |
| background-color: #ffffff; | |
| border-radius: 12px; | |
| box-shadow: 0 8px 16px rgba(0,0,0,0.1); | |
| } | |
| h1, h2 { | |
| color: #333333; | |
| } | |
| .gradio-input, .gradio-output { | |
| margin-bottom: 20px; | |
| } | |
| .gradio-button { | |
| background-color: #4CAF50 !important; | |
| color: white !important; | |
| border: none !important; | |
| padding: 10px 20px !important; | |
| font-size: 16px !important; | |
| border-radius: 6px !important; | |
| cursor: pointer; | |
| } | |
| .gradio-button:hover { | |
| background-color: #45a049 !important; | |
| } | |
| """ | |
| with gr.Blocks(css=custom_css, title="CSV <-> Parquet Converter") as demo: | |
| gr.Markdown("# CSV <-> Parquet Converter") | |
| gr.Markdown("Upload a CSV or Parquet file and select the conversion type. The app converts the file to the opposite format and displays a preview of the top 10 rows.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_file = gr.File(label="Upload CSV or Parquet File") | |
| with gr.Column(scale=1): | |
| conversion_type = gr.Radio( | |
| choices=["CSV to Parquet", "Parquet to CSV"], | |
| label="Conversion Type", | |
| value="CSV to Parquet" # Set default value | |
| ) | |
| convert_button = gr.Button("Convert", elem_classes=["gradio-button"]) | |
| with gr.Row(): | |
| output_file = gr.File(label="Converted File") | |
| preview = gr.Textbox(label="Preview (Top 10 Rows)", lines=15) | |
| convert_button.click(fn=convert_file, inputs=[input_file, conversion_type], outputs=[output_file, preview]) | |
| gr.Markdown(""" | |
| ### Notes: | |
| - This converter uses UTF-8 as the default encoding | |
| - If UTF-8 fails, it tries Latin-1, ISO-8859-1, and CP1252 encodings | |
| - Parquet files preserve data types better than CSV | |
| - The preview shows only the first 10 rows of data | |
| """) | |
| if __name__ == "__main__": | |
| demo.launch() |