graphRAG / models.py
nvtitan's picture
Upload 24 files
e884643 verified
"""
Data models for GraphLLM system following the manual specifications
"""
from pydantic import BaseModel, Field
from typing import Optional, List, Dict, Any, Literal
from datetime import datetime
from enum import Enum
import uuid
# Enums
class ChunkType(str, Enum):
"""Types of chunks extracted from PDF"""
PARAGRAPH = "paragraph"
CODE = "code"
TABLE = "table"
IMAGE = "image"
IMAGE_TEXT = "image_text"
class NodeType(str, Enum):
"""Types of graph nodes"""
CONCEPT = "concept"
PERSON = "person"
METHOD = "method"
TERM = "term"
CLASS = "class"
FUNCTION = "function"
ENTITY = "entity"
class RelationType(str, Enum):
"""Canonical relation types for edges"""
IS_A = "is_a"
PART_OF = "part_of"
METHOD_OF = "method_of"
CAUSES = "causes"
USES = "uses"
RELATED_TO = "related_to"
DEFINED_AS = "defined_as"
DEPENDS_ON = "depends_on"
IMPLEMENTS = "implements"
SIMILAR_TO = "similar_to"
OBSERVES = "observes"
MEASURES = "measures"
PRODUCES = "produces"
CONTAINS = "contains"
AFFECTS = "affects"
ENABLES = "enables"
REQUIRES = "requires"
INTERACTS_WITH = "interacts_with"
ENRICHES = "enriches"
ENHANCES = "enhances"
SUPPORTS = "supports"
DESCRIBES = "describes"
EXPLAINS = "explains"
REFERS_TO = "refers_to"
ASSOCIATED_WITH = "associated_with"
# Core Data Models
class Chunk(BaseModel):
"""Individual chunk of text/content from PDF"""
chunk_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
pdf_id: str
page_number: int
char_range: tuple[int, int]
type: ChunkType
text: str
table_json: Optional[Dict[str, Any]] = None
image_id: Optional[str] = None
metadata: Dict[str, Any] = Field(default_factory=dict)
created_at: datetime = Field(default_factory=datetime.utcnow)
class EmbeddingEntry(BaseModel):
"""Vector embedding for a chunk"""
chunk_id: str
embedding: List[float]
created_at: datetime = Field(default_factory=datetime.utcnow)
metadata: Dict[str, Any] = Field(default_factory=dict)
class SupportingChunk(BaseModel):
"""Reference to a chunk supporting a node or edge"""
chunk_id: str
score: float
page_number: Optional[int] = None
snippet: Optional[str] = None
class GraphNode(BaseModel):
"""Node in the knowledge graph"""
node_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
label: str
type: NodeType
aliases: List[str] = Field(default_factory=list)
supporting_chunks: List[SupportingChunk] = Field(default_factory=list)
importance_score: float = 0.0
metadata: Dict[str, Any] = Field(default_factory=dict)
created_at: datetime = Field(default_factory=datetime.utcnow)
class GraphEdge(BaseModel):
"""Edge in the knowledge graph"""
edge_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
from_node: str = Field(alias="from")
to_node: str = Field(alias="to")
relation: RelationType
confidence: float
supporting_chunks: List[SupportingChunk] = Field(default_factory=list)
metadata: Dict[str, Any] = Field(default_factory=dict)
created_at: datetime = Field(default_factory=datetime.utcnow)
class Config:
populate_by_name = True
# FastAPI automatically serializes enums as their string values in JSON
class Triple(BaseModel):
"""Extracted triple from text"""
subject: str
predicate: str
object: str
confidence: float = 1.0
source_chunk_id: Optional[str] = None
page_number: Optional[int] = None
justification: Optional[str] = None
class CanonicalTriple(BaseModel):
"""LLM-canonicalized triple"""
subject_label: str
object_label: str
relation: RelationType
confidence: float
justification: str
page_number: int
# API Request/Response Models
class UploadResponse(BaseModel):
"""Response from PDF upload"""
pdf_id: str
filename: str
status: str
message: str
num_pages: Optional[int] = None
num_chunks: Optional[int] = None
class GraphResponse(BaseModel):
"""Response containing graph data"""
nodes: List[GraphNode]
edges: List[GraphEdge]
metadata: Dict[str, Any] = Field(default_factory=dict)
class SourceCitation(BaseModel):
"""Source citation with page number and snippet"""
page_number: int
snippet: str
chunk_id: str
score: Optional[float] = None
class NodeDetailResponse(BaseModel):
"""Response for node detail request"""
node_id: str
label: str
type: NodeType
summary: str
sources: List[SourceCitation]
related_nodes: List[Dict[str, Any]] = Field(default_factory=list)
raw_chunks: Optional[List[Chunk]] = None
class ChatMessage(BaseModel):
"""Chat message"""
role: Literal["user", "assistant", "system"]
content: str
sources: Optional[List[SourceCitation]] = None
timestamp: datetime = Field(default_factory=datetime.utcnow)
class ChatRequest(BaseModel):
"""Chat request"""
query: str
pdf_id: str
include_citations: bool = True
max_sources: int = 5
class ChatResponse(BaseModel):
"""Chat response with answer and citations"""
answer: str
sources: List[SourceCitation]
context_chunks: Optional[List[str]] = None
class PDFMetadata(BaseModel):
"""Metadata for uploaded PDF"""
pdf_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
filename: str
filepath: str
num_pages: int
file_size_bytes: int
upload_timestamp: datetime = Field(default_factory=datetime.utcnow)
processing_status: str = "pending"
num_chunks: int = 0
num_nodes: int = 0
num_edges: int = 0
metadata: Dict[str, Any] = Field(default_factory=dict)
class IngestionLog(BaseModel):
"""Log entry for ingestion process"""
log_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
pdf_id: str
timestamp: datetime = Field(default_factory=datetime.utcnow)
stage: str
status: str
message: str
details: Optional[Dict[str, Any]] = None
class AdminStatus(BaseModel):
"""Admin status response"""
total_pdfs: int
total_chunks: int
total_nodes: int
total_edges: int
vector_index_size: int
recent_logs: List[IngestionLog]