File size: 17,965 Bytes
e884643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
"""
Agent-Based RAG System using LangGraph
Provides intelligent query answering with tool use and multi-hop reasoning
"""
from typing import List, Dict, Any, TypedDict, Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, END, START
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
from loguru import logger
import asyncio
from models import SourceCitation, ChatResponse
from graph_store import GraphStore
from embedding_service import EmbeddingService
from llm_service import LLMService
class AgentState(TypedDict):
"""State for the RAG agent workflow"""
messages: List # Conversation history
query: str # Current user question
pdf_id: str # PDF context
tool_results: Dict[str, Any] # Results from tool executions
reasoning_steps: List[str] # Agent's reasoning process
final_answer: str # Synthesized answer
citations: List[SourceCitation] # Supporting citations
next_action: str # What to do next
class RAGAgent:
"""
Intelligent RAG agent that uses multiple tools to answer questions
Tools available:
1. vector_search - Semantic search through document chunks
2. graph_search - Find concepts in knowledge graph
3. get_node_details - Get detailed info about a graph node
4. get_related_nodes - Traverse graph relationships
5. get_chunk_by_id - Retrieve specific chunks for citations
"""
def __init__(self,
graph_store: GraphStore,
embedding_service: EmbeddingService,
llm_service: LLMService):
"""Initialize the RAG agent with necessary services"""
self.graph_store = graph_store
self.embedding_service = embedding_service
self.llm_service = llm_service
# Build LangGraph workflow
self.workflow = self._build_workflow()
self.app = self.workflow.compile()
logger.info("β RAG Agent initialized with LangGraph workflow")
def _create_tools(self):
"""Create tool functions for the agent"""
@tool
def vector_search(query: str, top_k: int = 5) -> List[Dict[str, Any]]:
"""
Search document chunks using semantic similarity.
Args:
query: The search query
top_k: Number of results to return
Returns:
List of relevant chunks with metadata and scores
"""
logger.info(f"π Tool: vector_search('{query}', top_k={top_k})")
try:
results = self.embedding_service.search(
query=query,
top_k=top_k
)
formatted_results = []
for metadata, score in results:
formatted_results.append({
"text": metadata.get("text", ""),
"page_number": metadata.get("page_number", 0),
"chunk_id": metadata.get("chunk_id", ""),
"score": float(score)
})
logger.info(f" β Found {len(formatted_results)} chunks")
return formatted_results
except Exception as e:
logger.error(f" β vector_search failed: {e}")
return []
@tool
def graph_search(concept: str) -> Dict[str, Any]:
"""
Find a concept node in the knowledge graph.
Args:
concept: The concept to search for
Returns:
Node information if found, None otherwise
"""
logger.info(f"π Tool: graph_search('{concept}')")
try:
node = self.graph_store.get_node_by_label(concept)
if node:
logger.info(f" β Found node: {node.label}")
return {
"node_id": node.node_id,
"label": node.label,
"type": node.type.value if hasattr(node.type, 'value') else node.type,
"importance": node.importance_score
}
else:
logger.info(f" β No node found for '{concept}'")
return None
except Exception as e:
logger.error(f" β graph_search failed: {e}")
return None
@tool
def get_node_details(node_id: str) -> Dict[str, Any]:
"""
Get detailed information about a graph node.
Args:
node_id: The ID of the node
Returns:
Detailed node information including supporting chunks
"""
logger.info(f"π Tool: get_node_details('{node_id}')")
try:
node = self.graph_store.get_node(node_id)
if not node:
logger.info(f" β Node not found")
return None
# Get supporting chunks
chunks = []
for chunk in node.supporting_chunks[:5]: # Top 5
chunks.append({
"page_number": chunk.page_number,
"snippet": chunk.snippet,
"score": chunk.score
})
logger.info(f" β Got details for {node.label}")
return {
"label": node.label,
"type": node.type.value if hasattr(node.type, 'value') else node.type,
"importance": node.importance_score,
"supporting_chunks": chunks
}
except Exception as e:
logger.error(f" β get_node_details failed: {e}")
return None
@tool
def get_related_nodes(node_id: str, max_neighbors: int = 5) -> List[Dict[str, Any]]:
"""
Get nodes related to a given node (graph traversal).
Args:
node_id: The ID of the starting node
max_neighbors: Maximum number of related nodes to return
Returns:
List of related nodes with relationship information
"""
logger.info(f"π Tool: get_related_nodes('{node_id}', max={max_neighbors})")
try:
neighbors = self.graph_store.get_neighbors(node_id)
related = []
for neighbor_node, edge in neighbors[:max_neighbors]:
relation_value = edge.relation.value if hasattr(edge.relation, 'value') else edge.relation
related.append({
"node_id": neighbor_node.node_id,
"label": neighbor_node.label,
"relation": relation_value,
"confidence": edge.confidence
})
logger.info(f" β Found {len(related)} related nodes")
return related
except Exception as e:
logger.error(f" β get_related_nodes failed: {e}")
return []
@tool
def get_chunk_by_id(chunk_id: str) -> Dict[str, Any]:
"""
Retrieve a specific chunk by its ID (for detailed citations).
Args:
chunk_id: The chunk identifier
Returns:
Chunk content and metadata
"""
logger.info(f"π Tool: get_chunk_by_id('{chunk_id}')")
try:
# Search by chunk_id in metadata
# This is a simplified version - you may need to implement proper chunk lookup
results = self.embedding_service.search_by_chunk_ids([chunk_id], top_k=1)
if results:
metadata, score = results[0]
logger.info(f" β Found chunk")
return {
"text": metadata.get("text", ""),
"page_number": metadata.get("page_number", 0),
"chunk_id": chunk_id
}
else:
logger.info(f" β Chunk not found")
return None
except Exception as e:
logger.error(f" β get_chunk_by_id failed: {e}")
return None
return [vector_search, graph_search, get_node_details, get_related_nodes, get_chunk_by_id]
def _build_workflow(self) -> StateGraph:
"""Build the LangGraph workflow for the agent"""
workflow = StateGraph(AgentState)
# Define workflow nodes
workflow.add_node("plan", self._plan_node)
workflow.add_node("execute_tools", self._execute_tools_node)
workflow.add_node("synthesize", self._synthesize_node)
# Define edges
workflow.add_edge(START, "plan")
workflow.add_conditional_edges(
"plan",
self._should_use_tools,
{
"tools": "execute_tools",
"direct": "synthesize"
}
)
workflow.add_edge("execute_tools", "synthesize")
workflow.add_edge("synthesize", END)
return workflow
def _plan_node(self, state: AgentState) -> AgentState:
"""Agent decides which tools to use"""
logger.info("π€ Agent: Planning which tools to use...")
query = state["query"]
# Simple heuristic-based planning (can be enhanced with LLM)
tools_to_use = []
reasoning = []
# Always use vector search for semantic matching
tools_to_use.append("vector_search")
reasoning.append("Use vector search for semantic document retrieval")
# Check if query mentions specific concepts (use graph)
if any(word in query.lower() for word in ["relate", "connection", "link", "between"]):
tools_to_use.append("graph_search")
reasoning.append("Query asks about relationships - use graph search")
# Check if asking about a specific concept
if any(word in query.lower() for word in ["what is", "define", "explain"]):
tools_to_use.append("graph_search")
reasoning.append("Query asks for concept definition - check graph")
state["tool_results"] = {"planned_tools": tools_to_use}
state["reasoning_steps"] = reasoning
state["next_action"] = "tools" if tools_to_use else "direct"
logger.info(f" Plan: {tools_to_use}")
return state
def _should_use_tools(self, state: AgentState) -> str:
"""Decide if tools are needed"""
return state.get("next_action", "direct")
def _execute_tools_node(self, state: AgentState) -> AgentState:
"""Execute the planned tools"""
logger.info("π§ Agent: Executing tools...")
query = state["query"]
planned_tools = state["tool_results"].get("planned_tools", [])
results = {}
# Create tools
tools_map = {}
for tool in self._create_tools():
tools_map[tool.name] = tool
# Execute tools
if "vector_search" in planned_tools:
vector_tool = tools_map["vector_search"]
results["vector_results"] = vector_tool.invoke({"query": query, "top_k": 5})
if "graph_search" in planned_tools:
# Extract main concept from query (simplified)
# In production, use NER or LLM to extract concept
words = query.lower().split()
potential_concepts = [w for w in words if len(w) > 4 and w not in ["what", "how", "does", "relate"]]
for concept in potential_concepts[:2]: # Try first 2
graph_tool = tools_map["graph_search"]
node_result = graph_tool.invoke({"concept": concept})
if node_result:
results[f"graph_node_{concept}"] = node_result
# Get related nodes
related_tool = tools_map["get_related_nodes"]
related = related_tool.invoke({"node_id": node_result["node_id"], "max_neighbors": 3})
results[f"related_{concept}"] = related
break
state["tool_results"].update(results)
logger.info(f" β Executed {len(planned_tools)} tools, got {len(results)} results")
return state
async def _synthesize_node(self, state: AgentState) -> AgentState:
"""Synthesize final answer from tool results"""
logger.info("π― Agent: Synthesizing answer...")
query = state["query"]
tool_results = state["tool_results"]
# Prepare context from tool results
context_parts = []
citations = []
# Add vector search results
if "vector_results" in tool_results:
vector_results = tool_results["vector_results"]
for i, result in enumerate(vector_results[:3]): # Top 3
context_parts.append(f"[Source {i+1}, p.{result['page_number']}]: {result['text']}")
citations.append(SourceCitation(
page_number=result["page_number"],
snippet=result["text"][:120] + "..." if len(result["text"]) > 120 else result["text"],
chunk_id=result["chunk_id"],
score=result["score"]
))
# Add graph results
for key, value in tool_results.items():
if key.startswith("graph_node_"):
concept = key.replace("graph_node_", "")
context_parts.append(f"[Graph Node]: '{value['label']}' is a {value['type']} (importance: {value['importance']:.2f})")
elif key.startswith("related_"):
concept = key.replace("related_", "")
if value:
relations = ", ".join([f"{r['label']} ({r['relation']})" for r in value])
context_parts.append(f"[Related Concepts]: {relations}")
# Create context for LLM
context = "\n\n".join(context_parts)
# Generate answer using Gemini
answer = await self.llm_service.agent_synthesize(query, context)
state["final_answer"] = answer
state["citations"] = citations
logger.info(" β Answer synthesized")
return state
async def chat(self, query: str, pdf_id: str = None, include_citations: bool = True) -> ChatResponse:
"""
Main entry point for agent-based chat
Args:
query: User's question
pdf_id: Optional PDF context
include_citations: Whether to include source citations
Returns:
ChatResponse with answer and citations
"""
logger.info(f"\n{'='*80}")
logger.info(f"π€ Agent-Based RAG Query: '{query}'")
logger.info(f"{'='*80}")
# Initialize state
initial_state = {
"messages": [HumanMessage(content=query)],
"query": query,
"pdf_id": pdf_id or "",
"tool_results": {},
"reasoning_steps": [],
"final_answer": "",
"citations": [],
"next_action": ""
}
try:
# Run workflow
final_state = await self.app.ainvoke(initial_state)
# Extract results
answer = final_state.get("final_answer", "I couldn't generate an answer.")
citations = final_state.get("citations", [])
if not include_citations:
citations = []
logger.info(f"β Agent completed successfully")
logger.info(f" Answer length: {len(answer)} chars")
logger.info(f" Citations: {len(citations)}")
logger.info(f"{'='*80}\n")
return ChatResponse(
answer=answer,
sources=citations[:5] # Top 5 citations
)
except Exception as e:
logger.error(f"β Agent failed: {e}", exc_info=True)
# Fallback to simple vector search
logger.warning("Falling back to simple RAG...")
return await self._fallback_simple_rag(query, pdf_id)
async def _fallback_simple_rag(self, query: str, pdf_id: str = None) -> ChatResponse:
"""Fallback to simple RAG if agent fails"""
try:
results = self.embedding_service.search(query=query, top_k=5, filter_pdf_id=pdf_id)
if not results:
return ChatResponse(
answer="I couldn't find relevant information to answer your question.",
sources=[]
)
# Prepare context
context_chunks = [
{
"page_number": meta.get("page_number", 0),
"text": meta.get("text", "")
}
for meta, score in results[:3]
]
# Generate answer
answer = await self.llm_service.rag_chat(query, context_chunks)
# Format sources
sources = []
for meta, score in results[:5]:
text = meta.get("text", "")
snippet = text[:120] + "..." if len(text) > 120 else text
sources.append(SourceCitation(
page_number=meta.get("page_number", 0),
snippet=snippet,
chunk_id=meta.get("chunk_id", ""),
score=score
))
return ChatResponse(answer=answer, sources=sources)
except Exception as e:
logger.error(f"Fallback RAG also failed: {e}")
return ChatResponse(
answer="I encountered an error processing your question.",
sources=[]
)
|