File size: 17,235 Bytes
e884643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
"""
LLM Inference Layer
Handles all LLM calls for extraction, summarization, and chat
Uses Mistral 7B with structured prompt templates
"""
from typing import List, Dict, Any, Optional
from loguru import logger
from config import settings
import json
import httpx
from tenacity import retry, stop_after_attempt, wait_exponential
from models import Triple, CanonicalTriple, RelationType


class PromptTemplates:
    """Centralized prompt templates following the manual"""

    @staticmethod
    def triplet_canonicalization(passage: str, triple: Triple) -> str:
        """Template for canonicalizing extracted triples"""
        return f"""Given the passage and an extracted triple, return a cleaned, canonical version.

Passage (from page {triple.page_number}):
{passage}

Extracted Triple:
- Subject: {triple.subject}
- Relation: {triple.predicate}
- Object: {triple.object}

CRITICAL INSTRUCTION: You MUST select the "relation" field from this EXACT list of 25 canonical relations.
Copy the exact string - do NOT create variations, synonyms, or modifications.

ALLOWED RELATIONS (choose exactly one):
1. is_a - for type/class relationships (e.g., "X is a Y")
2. part_of - for component relationships (e.g., "X is part of Y")
3. uses - for utilization (use "uses" for: utilizes, employs, applies)
4. causes - for causality (e.g., "X causes Y")
5. defined_as - for definitions (use "defined_as" for: defines, is defined as)
6. related_to - ONLY if no other relation fits
7. method_of - for methodological relationships
8. depends_on - for dependencies (e.g., "X depends on Y")
9. implements - for implementation (e.g., "X implements Y")
10. similar_to - for similarity
11. observes - for observation (use "observes" for: captures, records, detects, monitors)
12. measures - for measurement
13. produces - for production/generation (use "produces" for: makes, creates, generates, builds)
14. contains - for containment
15. affects - for influence (use "affects" for: influences, impacts, modifies, changes)
16. enables - for enablement (use "enables" for: facilitates, allows, permits)
17. requires - for requirements
18. interacts_with - for interactions
19. enriches - for enrichment
20. enhances - for enhancement (use "enhances" for: improves, optimizes, extends)
21. supports - for support (use "supports" for: contributes, helps, aids)
22. describes - for description (use "describes" for: proposes, suggests, presents, introduces)
23. explains - for explanation (use "explains" for: clarifies, demonstrates, shows, disentangles)
24. refers_to - for reference (use "refers_to" for: aims, targets, addresses, focuses on)
25. associated_with - for associations

EXAMPLES OF WHAT TO DO:
- If input has "utilizes" → use "uses"
- If input has "proposes" → use "describes"
- If input has "contributes to" → use "supports"
- If input has "aims at" → use "refers_to"

DO NOT USE: utilizes, proposes, contributes, aims, makes, captures, defines, or any other variations.
USE ONLY: The exact 25 strings listed above.

Return JSON in this exact format:
{{
  "subject_label": "cleaned subject name",
  "object_label": "cleaned object name",
  "relation": "one_of_the_25_exact_strings_above",
  "confidence": 0.85,
  "justification": "brief explanation referencing page {triple.page_number}"
}}

Output ONLY the JSON, no other text:
"""

    @staticmethod
    def node_summarization(node_label: str, chunks: List[Dict[str, Any]]) -> str:
        """Template for node summarization with citations"""
        chunks_text = "\n\n".join([
            f"[Chunk from p.{chunk['page_number']}]\n{chunk['text']}"
            for chunk in chunks
        ])

        return f"""Summarize the key facts about "{node_label}" using ONLY the following supporting chunks.

Requirements:
- Produce a concise summary (3-6 sentences)
- After any sentence that directly relies on a chunk, append (p. N) where N is the page number
- Do not invent information not present in the chunks
- Focus on the most important facts

Supporting Chunks:
{chunks_text}

Summary:
"""

    @staticmethod
    def rag_chat(user_query: str, context_chunks: List[Dict[str, Any]]) -> str:
        """Template for RAG chat with citations"""
        context_text = "\n\n".join([
            f"[Source {i+1}, p.{chunk['page_number']}]\n{chunk['text']}"
            for i, chunk in enumerate(context_chunks)
        ])

        return f"""You are an assistant that answers questions using ONLY the provided document context.

Context from document:
{context_text}

User Question: {user_query}

Instructions:
- Answer in friendly, concise language
- Include inline citations (p. N) for statements supported by chunks
- If you cannot find direct support, say "I cannot confirm this from the document"
- At the end, add a "Sources:" section listing page numbers and short snippets

Answer:
"""

    @staticmethod
    def system_message() -> str:
        """System message for chat"""
        return """You are a helpful assistant that answers questions strictly based on provided document context.
You always cite page numbers for factual statements. If information is not in the context, you say so clearly."""


class LLMService:
    """
    Service for LLM inference using Gemini API (via litellm)
    Handles generation, extraction, summarization, and agent synthesis
    """

    def __init__(self):
        # Use Gemini instead of Mistral
        self.api_key = settings.gemini_api_key
        self.model = f"gemini/{settings.gemini_model}"
        self.temperature = settings.llm_temperature
        self.max_tokens = settings.llm_max_tokens
        self.timeout = settings.llm_timeout

        # Import litellm for Gemini
        try:
            import litellm
            self.litellm = litellm
            logger.info(f"✓ LLMService initialized with Gemini ({settings.gemini_model})")
        except ImportError:
            logger.error("litellm not installed. Install with: pip install litellm")
            raise

        if not self.api_key:
            logger.warning("No Gemini API key configured. LLM features will not work.")

    @retry(stop=stop_after_attempt(3), wait=wait_exponential(min=1, max=10))
    async def _call_api(
        self,
        messages: List[Dict[str, str]],
        temperature: Optional[float] = None,
        max_tokens: Optional[int] = None,
        json_mode: bool = False
    ) -> str:
        """
        Call Gemini API via litellm with retry logic

        Args:
            messages: List of message dicts with 'role' and 'content'
            temperature: Override default temperature
            max_tokens: Override default max tokens
            json_mode: Request JSON output

        Returns:
            Generated text
        """
        if not self.api_key:
            raise ValueError("Gemini API key not configured")

        try:
            # Use litellm for Gemini API calls
            import asyncio

            kwargs = {
                "model": self.model,
                "api_key": self.api_key,
                "messages": messages,
                "temperature": temperature or self.temperature,
                "max_tokens": max_tokens or self.max_tokens,
            }

            if json_mode:
                kwargs["response_format"] = {"type": "json_object"}

            # litellm.completion is synchronous, wrap in asyncio.to_thread
            response = await asyncio.to_thread(
                self.litellm.completion,
                **kwargs
            )

            return response.choices[0].message.content

        except Exception as e:
            logger.error(f"Gemini API error: {str(e)}")
            raise

    async def canonicalize_triple(
        self,
        triple: Triple,
        passage: str
    ) -> Optional[CanonicalTriple]:
        """
        Canonicalize a raw triple using LLM

        Args:
            triple: Raw extracted triple
            passage: Surrounding text passage

        Returns:
            CanonicalTriple or None if LLM fails
        """
        prompt = PromptTemplates.triplet_canonicalization(passage, triple)

        messages = [
            {"role": "system", "content": "You are an expert at extracting and canonicalizing knowledge graph triples. Always output valid JSON."},
            {"role": "user", "content": prompt}
        ]

        try:
            response = await self._call_api(messages, temperature=0.1, json_mode=True)
            data = json.loads(response)

            # Map string relation to enum
            relation_str = data.get("relation", "related_to").lower().strip()

            # Auto-correct common variations and map semantically similar verbs
            relation_corrections = {
                # Exact variations
                "defines_as": "defined_as",
                "defines": "defined_as",
                "is_part_of": "part_of",
                "used_by": "uses",
                "caused_by": "causes",
                "methods_of": "method_of",
                "depending_on": "depends_on",
                "implemented_by": "implements",
                "similar": "similar_to",
                "observed_by": "observes",
                "measured_by": "measures",
                "produced_by": "produces",
                "contained_in": "contains",
                "affected_by": "affects",
                "enabled_by": "enables",
                "required_by": "requires",
                "interact_with": "interacts_with",
                "enriched_by": "enriches",
                "enhanced_by": "enhances",
                "supported_by": "supports",
                "described_by": "describes",
                "explained_by": "explains",
                "refer_to": "refers_to",

                # Semantic mappings for common verbs
                "utilizes": "uses",
                "utilize": "uses",
                "employs": "uses",
                "applies": "uses",
                "makes": "produces",
                "creates": "produces",
                "generates": "produces",
                "builds": "produces",
                "proposes": "describes",
                "suggests": "describes",
                "presents": "describes",
                "introduces": "describes",
                "captures": "observes",
                "records": "observes",
                "detects": "observes",
                "monitors": "observes",
                "aims": "refers_to",
                "targets": "refers_to",
                "focuses_on": "refers_to",
                "addresses": "refers_to",
                "disentangles": "explains",
                "clarifies": "explains",
                "demonstrates": "explains",
                "shows": "explains",
                "contributes": "supports",
                "contributes_to": "supports",
                "helps": "supports",
                "aids": "supports",
                "facilitates": "enables",
                "allows": "enables",
                "permits": "enables",
                "improves": "enhances",
                "betters": "enhances",
                "optimizes": "enhances",
                "extends": "enhances",
                "influences": "affects",
                "impacts": "affects",
                "modifies": "affects",
                "changes": "affects",
            }

            relation_str = relation_corrections.get(relation_str, relation_str)

            try:
                relation = RelationType(relation_str)
            except ValueError:
                logger.warning(f"Invalid relation '{relation_str}', defaulting to 'related_to'")
                relation = RelationType.RELATED_TO

            return CanonicalTriple(
                subject_label=data["subject_label"],
                object_label=data["object_label"],
                relation=relation,
                confidence=data["confidence"],
                justification=data["justification"],
                page_number=triple.page_number or 0
            )
        except Exception as e:
            logger.error(f"Failed to canonicalize triple: {e}")
            return None

    async def summarize_node(
        self,
        node_label: str,
        supporting_chunks: List[Dict[str, Any]]
    ) -> str:
        """
        Generate summary for a graph node with citations

        Args:
            node_label: Name of the node
            supporting_chunks: List of chunk metadata dicts

        Returns:
            Summary text with inline citations
        """
        prompt = PromptTemplates.node_summarization(node_label, supporting_chunks)

        messages = [
            {"role": "system", "content": PromptTemplates.system_message()},
            {"role": "user", "content": prompt}
        ]

        try:
            # Use faster settings for node summaries
            summary = await self._call_api(
                messages,
                temperature=0.3,
                max_tokens=3072 # Shorter summaries = faster response
            )
            return summary.strip()
        except Exception as e:
            logger.error(f"Failed to summarize node: {e}")
            return f"Unable to generate summary for {node_label}."

    async def rag_chat(
        self,
        query: str,
        context_chunks: List[Dict[str, Any]]
    ) -> str:
        """
        Answer user query using RAG with citations

        Args:
            query: User question
            context_chunks: Retrieved context chunks

        Returns:
            Answer with citations and sources
        """
        prompt = PromptTemplates.rag_chat(query, context_chunks)

        messages = [
            {"role": "system", "content": PromptTemplates.system_message()},
            {"role": "user", "content": prompt}
        ]

        try:
            answer = await self._call_api(messages, temperature=0.3)
            return answer.strip()
        except Exception as e:
            logger.error(f"Failed to generate RAG response: {e}")
            return "I encountered an error while processing your question. Please try again."

    async def agent_synthesize(
        self,
        query: str,
        context: str
    ) -> str:
        """
        Synthesize answer for agent-based RAG from tool results

        Args:
            query: User question
            context: Combined context from tool executions

        Returns:
            Synthesized answer with citations
        """
        prompt = f"""You are an assistant that answers questions using the provided context from multiple tools.

Context from tools:
{context}

User Question: {query}

Instructions:
- Answer in friendly, concise language
- Include inline citations (p. N) for statements supported by sources
- If you cannot find direct support, say "I cannot confirm this from the available information"
- Synthesize information from different tools (vector search, graph search, etc.) cohesively

Answer:
"""

        messages = [
            {"role": "system", "content": PromptTemplates.system_message()},
            {"role": "user", "content": prompt}
        ]

        try:
            answer = await self._call_api(messages, temperature=0.3)
            return answer.strip()
        except Exception as e:
            logger.error(f"Failed to synthesize agent response: {e}")
            return "I encountered an error while processing your question. Please try again."

    async def extract_triples_llm(
        self,
        text: str,
        page_number: int,
        chunk_id: str
    ) -> List[Triple]:
        """
        Use LLM to extract triples directly (alternative to OpenIE)

        Args:
            text: Text to extract from
            page_number: Page number
            chunk_id: Chunk identifier

        Returns:
            List of extracted triples
        """
        prompt = f"""Extract key relationships from this text as subject-predicate-object triples.
Focus on important concepts, methods, definitions, and relationships.

Text (from page {page_number}):
{text}

Return a JSON array of triples, each with:
- subject: The subject entity
- predicate: The relationship/action
- object: The object entity
- confidence: Your confidence (0-1)

Output ONLY valid JSON array:
"""

        messages = [
            {"role": "system", "content": "You are an expert at knowledge extraction. Always output valid JSON."},
            {"role": "user", "content": prompt}
        ]

        try:
            response = await self._call_api(messages, temperature=0.2, json_mode=True)
            data = json.loads(response)

            triples = []
            for item in data if isinstance(data, list) else data.get("triples", []):
                triple = Triple(
                    subject=item["subject"],
                    predicate=item["predicate"],
                    object=item["object"],
                    confidence=item.get("confidence", 0.7),
                    source_chunk_id=chunk_id,
                    page_number=page_number
                )
                triples.append(triple)

            return triples
        except Exception as e:
            logger.error(f"Failed to extract triples: {e}")
            return []