File size: 10,144 Bytes
e884643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
"""
Graph Builder - constructs knowledge graph from canonical triples
Handles entity canonicalization, node/edge creation, and graph pruning
"""
from typing import List, Dict, Any, Set, Tuple
from loguru import logger
from models import CanonicalTriple, GraphNode, GraphEdge, SupportingChunk, NodeType
from graph_store import GraphStore
from embedding_service import EmbeddingService
from config import settings
import numpy as np
from collections import defaultdict
class GraphBuilder:
"""
Builds and refines knowledge graph from canonical triples
Implements entity canonicalization, deduplication, and pruning
"""
def __init__(self, graph_store: GraphStore, embedding_service: EmbeddingService):
self.graph_store = graph_store
self.embedding_service = embedding_service
self.entity_embeddings: Dict[str, np.ndarray] = {}
async def build_graph(self, triples: List[CanonicalTriple]) -> Tuple[int, int]:
"""
Build graph from canonical triples
Args:
triples: List of canonical triples
Returns:
Tuple of (num_nodes_added, num_edges_added)
"""
logger.info(f"Building graph from {len(triples)} triples")
# Step 1: Entity canonicalization - merge similar entities
entity_map = await self._canonicalize_entities(triples)
# Step 2: Create nodes
nodes_created = 0
logger.info(f"Creating nodes from {len(entity_map)} canonical entities")
for entity_label in entity_map.keys():
node = await self._create_node(entity_label, entity_map, triples)
if self.graph_store.add_node(node):
nodes_created += 1
logger.debug(f"Created node: {node.label} (type: {node.type.value})")
logger.info(f"✓ Successfully created {nodes_created} nodes")
# Step 3: Create edges
edges_created = 0
for triple in triples:
# Map to canonical entities
canonical_subject = entity_map.get(triple.subject_label, triple.subject_label)
canonical_object = entity_map.get(triple.object_label, triple.object_label)
# Skip self-loops
if canonical_subject == canonical_object:
continue
# Get node IDs
subject_node = self.graph_store.get_node_by_label(canonical_subject)
object_node = self.graph_store.get_node_by_label(canonical_object)
if not subject_node or not object_node:
continue
# Create edge
edge = self._create_edge(subject_node, object_node, triple)
if self.graph_store.add_edge(edge):
edges_created += 1
logger.info(f"Created {nodes_created} nodes and {edges_created} edges")
# Step 4: Compute importance scores
self._compute_importance_scores()
# Step 5: Prune low-importance nodes and edges
pruned_nodes, pruned_edges = self._prune_graph()
logger.info(f"Pruned {pruned_nodes} nodes and {pruned_edges} edges")
logger.info(f"Final graph: {nodes_created - pruned_nodes} nodes, {edges_created - pruned_edges} edges")
return nodes_created - pruned_nodes, edges_created - pruned_edges
async def _canonicalize_entities(self, triples: List[CanonicalTriple]) -> Dict[str, str]:
"""
⚡ OPTIMIZATION: Skip expensive canonicalization (identity mapping)
With 2 nodes per page hard cap and strict technical filtering,
we have very few duplicates and highly specific entities.
Embedding computation + O(n²) similarity checks not worth the cost.
Args:
triples: List of triples
Returns:
Dict mapping entity_label -> canonical_label (identity map)
"""
# Collect all unique entities
entities = set()
for triple in triples:
entities.add(triple.subject_label)
entities.add(triple.object_label)
# DETERMINISTIC: Sort entities for consistent ordering across runs
entities_list = sorted(list(entities))
logger.info(f"⚡ FAST MODE: Skipping entity canonicalization for {len(entities_list)} unique entities")
logger.info(f"Each entity maps to itself (no merging)")
# Return identity mapping - each entity maps to itself
entity_map = {entity: entity for entity in entities_list}
logger.info(f"✓ Identity mapping created (0 merges, {len(entities_list)} canonical entities)")
return entity_map
def _entity_to_text(self, entity: str) -> str:
"""Convert entity label to text for embedding"""
# Simple approach: use the label as-is
return entity
async def _create_node(
self,
label: str,
entity_map: Dict[str, str],
triples: List[CanonicalTriple]
) -> GraphNode:
"""
Create a graph node for an entity
Args:
label: Canonical entity label
entity_map: Entity canonicalization map
triples: All triples (to find supporting chunks)
Returns:
GraphNode
"""
# Find all triples mentioning this entity
supporting_chunks = []
aliases = []
for original_label, canonical_label in entity_map.items():
if canonical_label == label:
if original_label != label:
aliases.append(original_label)
# Collect supporting chunks from triples
chunk_scores = defaultdict(float)
for triple in triples:
canonical_subject = entity_map.get(triple.subject_label, triple.subject_label)
canonical_object = entity_map.get(triple.object_label, triple.object_label)
if canonical_subject == label or canonical_object == label:
# This triple supports the node
chunk_key = (triple.page_number, triple.justification[:100]) # Use justification as proxy
chunk_scores[chunk_key] += triple.confidence
# Convert to SupportingChunk objects
for (page_number, snippet), score in chunk_scores.items():
supporting_chunks.append(SupportingChunk(
chunk_id=f"page_{page_number}", # Placeholder
score=score,
page_number=page_number,
snippet=snippet
))
# DETERMINISTIC: Sort by score (desc) then page_number (asc) for stable ordering
supporting_chunks.sort(key=lambda x: (-x.score, x.page_number))
supporting_chunks = supporting_chunks[:10]
# Infer node type (simple heuristic)
node_type = self._infer_node_type(label)
node = GraphNode(
label=label,
type=node_type,
aliases=aliases,
supporting_chunks=supporting_chunks,
importance_score=0.0 # Will be computed later
)
return node
def _infer_node_type(self, label: str) -> NodeType:
"""Infer node type from label (simple heuristics)"""
label_lower = label.lower()
# Check for common patterns
if any(word in label_lower for word in ["function", "method", "algorithm"]):
return NodeType.FUNCTION
elif any(word in label_lower for word in ["class", "type", "struct"]):
return NodeType.CLASS
elif label[0].isupper() and " " not in label: # Capitalized single word
return NodeType.PERSON
elif any(word in label_lower for word in ["definition", "term", "concept"]):
return NodeType.TERM
else:
return NodeType.CONCEPT
def _create_edge(
self,
from_node: GraphNode,
to_node: GraphNode,
triple: CanonicalTriple
) -> GraphEdge:
"""Create a graph edge from a triple"""
supporting_chunk = SupportingChunk(
chunk_id=f"page_{triple.page_number}",
score=triple.confidence,
page_number=triple.page_number,
snippet=triple.justification
)
edge = GraphEdge(
from_node=from_node.node_id,
to_node=to_node.node_id,
relation=triple.relation,
confidence=triple.confidence,
supporting_chunks=[supporting_chunk]
)
return edge
def _compute_importance_scores(self):
"""
⚡ OPTIMIZATION: Simplified importance scoring (skip expensive PageRank)
Since we're not pruning, we only need basic scores for display purposes.
"""
logger.info("⚡ FAST MODE: Computing simplified importance scores (no PageRank)")
# Update node importance with simple metric (just degree centrality)
for node in self.graph_store.get_all_nodes():
# Simple importance = number of connections (fast to compute)
num_neighbors = len(self.graph_store.get_neighbors(node.node_id))
# Normalize to 0-1 range (assume max 10 connections)
importance = min(num_neighbors / 10.0, 1.0)
node.importance_score = importance
# Update in store (for NetworkX)
if not self.graph_store.use_neo4j:
self.graph_store.nodes_dict[node.node_id] = node
logger.info(f"✓ Importance scores computed (based on degree centrality only)")
def _prune_graph(self) -> Tuple[int, int]:
"""
⚡ OPTIMIZATION: Skip pruning (we already filter at extraction)
Pruning is expensive (PageRank + multiple graph traversals).
With strict filtering at extraction (technical concepts only, 2 per page),
we don't need additional pruning.
Returns:
Tuple of (nodes_removed, edges_removed) - always (0, 0)
"""
logger.info(f"⚡ FAST MODE: Skipping graph pruning")
logger.info(f"Nodes already filtered at extraction with strict technical validation")
logger.info(f"Final graph: {len(self.graph_store.get_all_nodes())} nodes, {len(self.graph_store.get_all_edges())} edges")
return 0, 0
|