# ------------------------🔧 ENVIRONMENT SETUP ------------------------
import os
os.environ["TRANSFORMERS_CACHE"] = "./hf_cache"
import streamlit as st
from transformers import pipeline
from streamlit_lottie import st_lottie
import requests
import datetime
import pandas as pd
# ------------------------🎞️ LOAD LOTTIE ANIMATION ------------------------
def load_lottieurl(url):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
lottie_animation = load_lottieurl("https://assets2.lottiefiles.com/packages/lf20_w51pcehl.json")
# ------------------------📌 APP TITLE & HEADER ------------------------
st.markdown("
📝 Text Summarization App
", unsafe_allow_html=True)
st_lottie(lottie_animation, height=250, key="header_anim")
# ------------------------🚀 LOAD SUMMARIZATION MODELS ------------------------
@st.cache_resource(show_spinner="🔄 Loading summarization model...")
def load_summarizer(model_name):
return pipeline("summarization", model=model_name)
model_map = {
"BART": "facebook/bart-large-cnn",
"T5": "t5-small",
"PEGASUS": "google/pegasus-cnn_dailymail"
}
model_choice = st.selectbox("🔍 Choose Summarization Model", list(model_map.keys()))
summarizer = load_summarizer(model_map[model_choice])
# ------------------------🛠️ USER INPUT & CONTROLS ------------------------
mode = st.radio("📤 Choose Output Mode:", ["Paragraph", "Bullet Points", "Custom"], horizontal=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("### ✍️ Enter Text or Upload File")
uploaded_file = st.file_uploader("📂 Upload .txt file", type=["txt"])
if uploaded_file is not None:
user_input = uploaded_file.read().decode("utf-8")
st.text_area("📃 Uploaded Text Preview", value=user_input, height=200)
else:
user_input = st.text_area("", height=300, placeholder="Paste your job description, article, or any long-form text here...")
word_count = len(user_input.split())
st.markdown(f"**🧮 {word_count} words**")
# 🔧 Summary length control
if mode != "Custom":
length_label = st.radio("📏 Summary Length", ["Short", "Medium"], horizontal=True)
min_len = 40
max_len = 150 if length_label == "Short" else 300
else:
st.markdown("### 🎚️ Customize Summary Length")
min_len = st.slider("Minimum Length", 20, 200, 50)
max_len = st.slider("Maximum Length", 100, 500, 200)
# ✨ Generate Summary
if st.button("✨ Summarize", use_container_width=True):
if not user_input.strip():
st.warning("⚠️ Please enter text to summarize.")
else:
with st.spinner("🔄 Generating your summary... hang tight! ⏳"):
try:
result = summarizer(user_input, max_length=max_len, min_length=min_len, do_sample=False)
summary = result[0]['summary_text']
if mode == "Bullet Points":
summary = "• " + summary.replace(". ", ".\n• ")
st.session_state["summary"] = summary
except Exception as e:
st.error(f"⚠️ Error during summarization: {e}")
# ------------------------📄 SUMMARY OUTPUT & HISTORY ------------------------
with col2:
st.markdown("### 📄 Summary Output")
if "summary" in st.session_state:
st.success(st.session_state["summary"])
summary_words = len(st.session_state["summary"].split())
st.markdown(f"📝 {summary_words} words")
# 📥 Download Summary as TXT
st.download_button(
label="📥 Download This Summary (TXT)",
data=st.session_state["summary"],
file_name="summary.txt",
mime="text/plain"
)
# 💾 Save to Summary History
with st.expander("💾 Save & View Summary History"):
if st.button("✅ Save this summary to history"):
try:
with open("summary_history.txt", "a", encoding="utf-8") as f:
f.write("\n" + "="*50 + "\n")
f.write(f"🕒 Timestamp: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"🔹 Model Used: {model_choice}\n")
f.write(f"🔸 Mode: {mode}\n")
f.write(f"📝 Original Text:\n{user_input.strip()}\n\n")
f.write(f"✅ Summary:\n{st.session_state['summary'].strip()}\n")
f.write("="*50 + "\n\n")
st.success("📌 Summary saved to history!")
except Exception as e:
st.error(f"❌ Failed to save summary: {e}")
# 📚 View Summary History
if st.checkbox("📚 Show Summary History"):
try:
with open("summary_history.txt", "r", encoding="utf-8") as f:
history = f.read()
st.text_area("🗂️ Summary History", value=history, height=300)
except FileNotFoundError:
st.info("ℹ️ No history found yet.")
# 📊 Export as CSV
if st.button("⬇️ Export History as CSV"):
try:
summaries = []
with open("summary_history.txt", "r", encoding="utf-8") as f:
lines = f.read().split("="*50)
for entry in lines:
if "🕒 Timestamp" in entry:
lines_dict = {
"Timestamp": entry.split("🕒 Timestamp: ")[1].split("\n")[0].strip(),
"Model": entry.split("🔹 Model Used: ")[1].split("\n")[0].strip(),
"Mode": entry.split("🔸 Mode: ")[1].split("\n")[0].strip(),
"Original_Text": entry.split("📝 Original Text:\n")[1].split("\n\n")[0].strip(),
"Summary": entry.split("✅ Summary:\n")[1].strip()
}
summaries.append(lines_dict)
df = pd.DataFrame(summaries)
csv = df.to_csv(index=False).encode('utf-8')
st.download_button("📄 Download CSV File", csv, "summary_history.csv", "text/csv")
except Exception as e:
st.error(f"❌ Failed to export as CSV: {e}")
else:
st.info("ℹ️ Your summary will appear here once generated.")
# ------------------------🔚 FOOTER ------------------------
st.markdown("
", unsafe_allow_html=True)
st.markdown(
"🚀 Built by MULA VAMSHI🤍 using Hugging Face Transformers, Streamlit & Lottie",
unsafe_allow_html=True
)