# ------------------------🔧 ENVIRONMENT SETUP ------------------------ import os os.environ["TRANSFORMERS_CACHE"] = "./hf_cache" import streamlit as st from transformers import pipeline from streamlit_lottie import st_lottie import requests import datetime import pandas as pd # ------------------------🎞️ LOAD LOTTIE ANIMATION ------------------------ def load_lottieurl(url): r = requests.get(url) if r.status_code != 200: return None return r.json() lottie_animation = load_lottieurl("https://assets2.lottiefiles.com/packages/lf20_w51pcehl.json") # ------------------------📌 APP TITLE & HEADER ------------------------ st.markdown("

📝 Text Summarization App

", unsafe_allow_html=True) st_lottie(lottie_animation, height=250, key="header_anim") # ------------------------🚀 LOAD SUMMARIZATION MODELS ------------------------ @st.cache_resource(show_spinner="🔄 Loading summarization model...") def load_summarizer(model_name): return pipeline("summarization", model=model_name) model_map = { "BART": "facebook/bart-large-cnn", "T5": "t5-small", "PEGASUS": "google/pegasus-cnn_dailymail" } model_choice = st.selectbox("🔍 Choose Summarization Model", list(model_map.keys())) summarizer = load_summarizer(model_map[model_choice]) # ------------------------🛠️ USER INPUT & CONTROLS ------------------------ mode = st.radio("📤 Choose Output Mode:", ["Paragraph", "Bullet Points", "Custom"], horizontal=True) col1, col2 = st.columns(2) with col1: st.markdown("### ✍️ Enter Text or Upload File") uploaded_file = st.file_uploader("📂 Upload .txt file", type=["txt"]) if uploaded_file is not None: user_input = uploaded_file.read().decode("utf-8") st.text_area("📃 Uploaded Text Preview", value=user_input, height=200) else: user_input = st.text_area("", height=300, placeholder="Paste your job description, article, or any long-form text here...") word_count = len(user_input.split()) st.markdown(f"**🧮 {word_count} words**") # 🔧 Summary length control if mode != "Custom": length_label = st.radio("📏 Summary Length", ["Short", "Medium"], horizontal=True) min_len = 40 max_len = 150 if length_label == "Short" else 300 else: st.markdown("### 🎚️ Customize Summary Length") min_len = st.slider("Minimum Length", 20, 200, 50) max_len = st.slider("Maximum Length", 100, 500, 200) # ✨ Generate Summary if st.button("✨ Summarize", use_container_width=True): if not user_input.strip(): st.warning("⚠️ Please enter text to summarize.") else: with st.spinner("🔄 Generating your summary... hang tight! ⏳"): try: result = summarizer(user_input, max_length=max_len, min_length=min_len, do_sample=False) summary = result[0]['summary_text'] if mode == "Bullet Points": summary = "• " + summary.replace(". ", ".\n• ") st.session_state["summary"] = summary except Exception as e: st.error(f"⚠️ Error during summarization: {e}") # ------------------------📄 SUMMARY OUTPUT & HISTORY ------------------------ with col2: st.markdown("### 📄 Summary Output") if "summary" in st.session_state: st.success(st.session_state["summary"]) summary_words = len(st.session_state["summary"].split()) st.markdown(f"📝 {summary_words} words") # 📥 Download Summary as TXT st.download_button( label="📥 Download This Summary (TXT)", data=st.session_state["summary"], file_name="summary.txt", mime="text/plain" ) # 💾 Save to Summary History with st.expander("💾 Save & View Summary History"): if st.button("✅ Save this summary to history"): try: with open("summary_history.txt", "a", encoding="utf-8") as f: f.write("\n" + "="*50 + "\n") f.write(f"🕒 Timestamp: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") f.write(f"🔹 Model Used: {model_choice}\n") f.write(f"🔸 Mode: {mode}\n") f.write(f"📝 Original Text:\n{user_input.strip()}\n\n") f.write(f"✅ Summary:\n{st.session_state['summary'].strip()}\n") f.write("="*50 + "\n\n") st.success("📌 Summary saved to history!") except Exception as e: st.error(f"❌ Failed to save summary: {e}") # 📚 View Summary History if st.checkbox("📚 Show Summary History"): try: with open("summary_history.txt", "r", encoding="utf-8") as f: history = f.read() st.text_area("🗂️ Summary History", value=history, height=300) except FileNotFoundError: st.info("ℹ️ No history found yet.") # 📊 Export as CSV if st.button("⬇️ Export History as CSV"): try: summaries = [] with open("summary_history.txt", "r", encoding="utf-8") as f: lines = f.read().split("="*50) for entry in lines: if "🕒 Timestamp" in entry: lines_dict = { "Timestamp": entry.split("🕒 Timestamp: ")[1].split("\n")[0].strip(), "Model": entry.split("🔹 Model Used: ")[1].split("\n")[0].strip(), "Mode": entry.split("🔸 Mode: ")[1].split("\n")[0].strip(), "Original_Text": entry.split("📝 Original Text:\n")[1].split("\n\n")[0].strip(), "Summary": entry.split("✅ Summary:\n")[1].strip() } summaries.append(lines_dict) df = pd.DataFrame(summaries) csv = df.to_csv(index=False).encode('utf-8') st.download_button("📄 Download CSV File", csv, "summary_history.csv", "text/csv") except Exception as e: st.error(f"❌ Failed to export as CSV: {e}") else: st.info("ℹ️ Your summary will appear here once generated.") # ------------------------🔚 FOOTER ------------------------ st.markdown("
", unsafe_allow_html=True) st.markdown( "🚀 Built by MULA VAMSHI🤍 using Hugging Face Transformers, Streamlit & Lottie", unsafe_allow_html=True )