Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +1 -13
- app.py +364 -0
- requirements.txt +7 -0
README.md
CHANGED
|
@@ -1,13 +1 @@
|
|
| 1 |
-
|
| 2 |
-
title: Textdiffuser 2 Demo
|
| 3 |
-
emoji: ⚡
|
| 4 |
-
colorFrom: green
|
| 5 |
-
colorTo: purple
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.23.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: apache-2.0
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
# textdiffuser-2-demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - TextDiffuser-2 implementation for Hugging Face Spaces
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import json
|
| 7 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
+
from diffusers import StableDiffusionPipeline
|
| 10 |
+
|
| 11 |
+
# Check for GPU
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
print(f"Using device: {device}")
|
| 14 |
+
|
| 15 |
+
class SimpleTextDiffuser:
|
| 16 |
+
"""
|
| 17 |
+
Simple implementation of TextDiffuser-2 concept for Hugging Face Spaces
|
| 18 |
+
"""
|
| 19 |
+
def __init__(self):
|
| 20 |
+
# Load language model for layout generation
|
| 21 |
+
# Using a small model for efficiency
|
| 22 |
+
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
| 23 |
+
self.language_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
| 24 |
+
self.language_model.to(device)
|
| 25 |
+
|
| 26 |
+
# Only load the diffusion model if we have a GPU
|
| 27 |
+
self.diffusion_model = None
|
| 28 |
+
if torch.cuda.is_available():
|
| 29 |
+
self.diffusion_model = StableDiffusionPipeline.from_pretrained(
|
| 30 |
+
"runwayml/stable-diffusion-v1-5",
|
| 31 |
+
torch_dtype=torch.float16
|
| 32 |
+
)
|
| 33 |
+
self.diffusion_model.to(device)
|
| 34 |
+
|
| 35 |
+
print("Models initialized")
|
| 36 |
+
|
| 37 |
+
def generate_layout(self, prompt, image_size=(512, 512), num_text_elements=3):
|
| 38 |
+
"""Generate text layout based on prompt"""
|
| 39 |
+
width, height = image_size
|
| 40 |
+
|
| 41 |
+
# Format the prompt for layout generation
|
| 42 |
+
layout_prompt = f"""
|
| 43 |
+
Create a layout for an image with:
|
| 44 |
+
- Description: {prompt}
|
| 45 |
+
- Image size: {width}x{height}
|
| 46 |
+
- Number of text elements: {num_text_elements}
|
| 47 |
+
|
| 48 |
+
Generate text content and positions:
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
# Generate layout using LM
|
| 52 |
+
input_ids = self.tokenizer.encode(layout_prompt, return_tensors="pt").to(device)
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
output = self.language_model.generate(
|
| 55 |
+
input_ids,
|
| 56 |
+
max_length=input_ids.shape[1] + 150,
|
| 57 |
+
temperature=0.7,
|
| 58 |
+
num_return_sequences=1,
|
| 59 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
layout_text = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
| 63 |
+
|
| 64 |
+
# Parse the generated layout (simplified)
|
| 65 |
+
# In a real implementation, this would be more sophisticated
|
| 66 |
+
text_elements = []
|
| 67 |
+
|
| 68 |
+
# Simple fallback: generate random layout
|
| 69 |
+
import random
|
| 70 |
+
|
| 71 |
+
# Create a title element
|
| 72 |
+
title = prompt.split()[:5]
|
| 73 |
+
title = " ".join(title) + "..."
|
| 74 |
+
title_x = width // 4
|
| 75 |
+
title_y = height // 4
|
| 76 |
+
text_elements.append({
|
| 77 |
+
"text": title,
|
| 78 |
+
"position": (title_x, title_y),
|
| 79 |
+
"size": 24,
|
| 80 |
+
"color": (0, 0, 0),
|
| 81 |
+
"type": "title"
|
| 82 |
+
})
|
| 83 |
+
|
| 84 |
+
# Create additional text elements
|
| 85 |
+
sample_texts = [
|
| 86 |
+
"Premium Quality",
|
| 87 |
+
"Best Value",
|
| 88 |
+
"Limited Edition",
|
| 89 |
+
"New Collection",
|
| 90 |
+
"Special Offer",
|
| 91 |
+
"Coming Soon",
|
| 92 |
+
"Best Seller",
|
| 93 |
+
"Top Choice",
|
| 94 |
+
"Featured Product",
|
| 95 |
+
"Exclusive Deal"
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
for i in range(1, num_text_elements):
|
| 99 |
+
x = random.randint(width // 8, width * 3 // 4)
|
| 100 |
+
y = random.randint(height // 3, height * 3 // 4)
|
| 101 |
+
text = sample_texts[i % len(sample_texts)]
|
| 102 |
+
color = (
|
| 103 |
+
random.randint(0, 200),
|
| 104 |
+
random.randint(0, 200),
|
| 105 |
+
random.randint(0, 200)
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
text_elements.append({
|
| 109 |
+
"text": text,
|
| 110 |
+
"position": (x, y),
|
| 111 |
+
"size": 18,
|
| 112 |
+
"color": color,
|
| 113 |
+
"type": f"element_{i}"
|
| 114 |
+
})
|
| 115 |
+
|
| 116 |
+
return text_elements, layout_text
|
| 117 |
+
|
| 118 |
+
def generate_image(self, prompt, image_size=(512, 512)):
|
| 119 |
+
"""Generate base image using diffusion model or placeholder"""
|
| 120 |
+
width, height = image_size
|
| 121 |
+
|
| 122 |
+
if self.diffusion_model and torch.cuda.is_available():
|
| 123 |
+
# Generate image using diffusion model
|
| 124 |
+
image = self.diffusion_model(
|
| 125 |
+
prompt=prompt,
|
| 126 |
+
height=height,
|
| 127 |
+
width=width,
|
| 128 |
+
num_inference_steps=30
|
| 129 |
+
).images[0]
|
| 130 |
+
else:
|
| 131 |
+
# Create a placeholder gradient image
|
| 132 |
+
image = Image.new("RGB", image_size, (240, 240, 240))
|
| 133 |
+
|
| 134 |
+
# Add a colored gradient background
|
| 135 |
+
for y in range(height):
|
| 136 |
+
for x in range(width):
|
| 137 |
+
r = int(240 - 100 * (y / height))
|
| 138 |
+
g = int(240 - 50 * (x / width))
|
| 139 |
+
b = int(240 - 75 * ((x + y) / (width + height)))
|
| 140 |
+
image.putpixel((x, y), (r, g, b))
|
| 141 |
+
|
| 142 |
+
return image
|
| 143 |
+
|
| 144 |
+
def render_text(self, image, text_elements):
|
| 145 |
+
"""Render text elements onto the image"""
|
| 146 |
+
image_with_text = image.copy()
|
| 147 |
+
draw = ImageDraw.Draw(image_with_text)
|
| 148 |
+
|
| 149 |
+
for element in text_elements:
|
| 150 |
+
try:
|
| 151 |
+
font_size = element["size"]
|
| 152 |
+
|
| 153 |
+
# Try to load a font, fall back to default if not available
|
| 154 |
+
try:
|
| 155 |
+
font = ImageFont.truetype("DejaVuSans.ttf", font_size)
|
| 156 |
+
except IOError:
|
| 157 |
+
try:
|
| 158 |
+
font = ImageFont.truetype("Arial.ttf", font_size)
|
| 159 |
+
except IOError:
|
| 160 |
+
font = ImageFont.load_default()
|
| 161 |
+
|
| 162 |
+
# Draw text with background for better visibility
|
| 163 |
+
text = element["text"]
|
| 164 |
+
position = element["position"]
|
| 165 |
+
color = element["color"]
|
| 166 |
+
|
| 167 |
+
# Get text size to create background
|
| 168 |
+
bbox = draw.textbbox(position, text, font=font)
|
| 169 |
+
text_width = bbox[2] - bbox[0]
|
| 170 |
+
text_height = bbox[3] - bbox[1]
|
| 171 |
+
|
| 172 |
+
# Draw semi-transparent background
|
| 173 |
+
padding = 5
|
| 174 |
+
background_box = [
|
| 175 |
+
position[0] - padding,
|
| 176 |
+
position[1] - padding,
|
| 177 |
+
position[0] + text_width + padding,
|
| 178 |
+
position[1] + text_height + padding
|
| 179 |
+
]
|
| 180 |
+
draw.rectangle(background_box, fill=(255, 255, 255, 200))
|
| 181 |
+
|
| 182 |
+
# Draw text
|
| 183 |
+
draw.text(position, text, fill=color, font=font)
|
| 184 |
+
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"Error rendering text: {e}")
|
| 187 |
+
continue
|
| 188 |
+
|
| 189 |
+
return image_with_text
|
| 190 |
+
|
| 191 |
+
def visualize_layout(self, text_elements, image_size=(512, 512)):
|
| 192 |
+
"""Create a visualization of the text layout"""
|
| 193 |
+
width, height = image_size
|
| 194 |
+
image = Image.new("RGB", image_size, (255, 255, 255))
|
| 195 |
+
draw = ImageDraw.Draw(image)
|
| 196 |
+
|
| 197 |
+
# Draw grid
|
| 198 |
+
for x in range(0, width, 50):
|
| 199 |
+
draw.line([(x, 0), (x, height)], fill=(230, 230, 230))
|
| 200 |
+
for y in range(0, height, 50):
|
| 201 |
+
draw.line([(0, y), (width, y)], fill=(230, 230, 230))
|
| 202 |
+
|
| 203 |
+
# Draw text elements
|
| 204 |
+
for element in text_elements:
|
| 205 |
+
position = element["position"]
|
| 206 |
+
text = element["text"]
|
| 207 |
+
element_type = element.get("type", "unknown")
|
| 208 |
+
|
| 209 |
+
# Draw position marker
|
| 210 |
+
circle_radius = 5
|
| 211 |
+
circle_bbox = [
|
| 212 |
+
position[0] - circle_radius,
|
| 213 |
+
position[1] - circle_radius,
|
| 214 |
+
position[0] + circle_radius,
|
| 215 |
+
position[1] + circle_radius
|
| 216 |
+
]
|
| 217 |
+
draw.ellipse(circle_bbox, fill=(255, 0, 0))
|
| 218 |
+
|
| 219 |
+
# Draw text label
|
| 220 |
+
try:
|
| 221 |
+
font = ImageFont.truetype("DejaVuSans.ttf", 12)
|
| 222 |
+
except IOError:
|
| 223 |
+
font = ImageFont.load_default()
|
| 224 |
+
|
| 225 |
+
# Draw text preview and position info
|
| 226 |
+
info_text = f"{text} ({element_type})"
|
| 227 |
+
pos_text = f"Position: ({position[0]}, {position[1]})"
|
| 228 |
+
draw.text((position[0] + 10, position[1]), info_text, fill=(0, 0, 0), font=font)
|
| 229 |
+
draw.text((position[0] + 10, position[1] + 15), pos_text, fill=(0, 0, 255), font=font)
|
| 230 |
+
|
| 231 |
+
return image
|
| 232 |
+
|
| 233 |
+
def generate_text_image(self, prompt, width=512, height=512, num_text_elements=3):
|
| 234 |
+
"""Generate an image with rendered text based on prompt"""
|
| 235 |
+
# Validate inputs
|
| 236 |
+
width = max(256, min(1024, width))
|
| 237 |
+
height = max(256, min(1024, height))
|
| 238 |
+
num_text_elements = max(1, min(5, num_text_elements))
|
| 239 |
+
|
| 240 |
+
image_size = (width, height)
|
| 241 |
+
|
| 242 |
+
# Step 1: Generate text layout
|
| 243 |
+
text_elements, layout_text = self.generate_layout(prompt, image_size, num_text_elements)
|
| 244 |
+
|
| 245 |
+
# Step 2: Generate base image
|
| 246 |
+
base_image = self.generate_image(prompt, image_size)
|
| 247 |
+
|
| 248 |
+
# Step 3: Render text onto the image
|
| 249 |
+
image_with_text = self.render_text(base_image, text_elements)
|
| 250 |
+
|
| 251 |
+
# Step 4: Create layout visualization
|
| 252 |
+
layout_visualization = self.visualize_layout(text_elements, image_size)
|
| 253 |
+
|
| 254 |
+
# Step 5: Format layout information for display
|
| 255 |
+
layout_info = {
|
| 256 |
+
"prompt": prompt,
|
| 257 |
+
"image_size": image_size,
|
| 258 |
+
"num_text_elements": num_text_elements,
|
| 259 |
+
"text_elements": text_elements,
|
| 260 |
+
"layout_generation_prompt": layout_text
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
formatted_layout = json.dumps(layout_info, indent=2)
|
| 264 |
+
|
| 265 |
+
return image_with_text, layout_visualization, formatted_layout
|
| 266 |
+
|
| 267 |
+
# Initialize the model
|
| 268 |
+
model = SimpleTextDiffuser()
|
| 269 |
+
|
| 270 |
+
# Define the Gradio interface
|
| 271 |
+
def process_request(prompt, width, height, num_text_elements):
|
| 272 |
+
try:
|
| 273 |
+
width = int(width)
|
| 274 |
+
height = int(height)
|
| 275 |
+
num_text_elements = int(num_text_elements)
|
| 276 |
+
|
| 277 |
+
image, layout, layout_info = model.generate_text_image(
|
| 278 |
+
prompt,
|
| 279 |
+
width=width,
|
| 280 |
+
height=height,
|
| 281 |
+
num_text_elements=num_text_elements
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
return image, layout, layout_info
|
| 285 |
+
except Exception as e:
|
| 286 |
+
error_message = f"Error: {str(e)}"
|
| 287 |
+
print(error_message)
|
| 288 |
+
return None, None, error_message
|
| 289 |
+
|
| 290 |
+
# Create the Gradio app
|
| 291 |
+
with gr.Blocks(title="TextDiffuser-2 Demo") as demo:
|
| 292 |
+
gr.Markdown("""
|
| 293 |
+
# TextDiffuser-2 Demo
|
| 294 |
+
|
| 295 |
+
This demo implements the concepts from the paper "[TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering](https://arxiv.org/abs/2311.16465)" by Jingye Chen et al.
|
| 296 |
+
|
| 297 |
+
Generate images with text by providing a descriptive prompt below.
|
| 298 |
+
""")
|
| 299 |
+
|
| 300 |
+
with gr.Row():
|
| 301 |
+
with gr.Column(scale=1):
|
| 302 |
+
prompt_input = gr.Textbox(
|
| 303 |
+
label="Prompt",
|
| 304 |
+
value="A modern business poster with company name and tagline",
|
| 305 |
+
lines=3
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
with gr.Row():
|
| 309 |
+
width_input = gr.Number(label="Width", value=512, minimum=256, maximum=1024, step=64)
|
| 310 |
+
height_input = gr.Number(label="Height", value=512, minimum=256, maximum=1024, step=64)
|
| 311 |
+
|
| 312 |
+
num_elements_input = gr.Slider(
|
| 313 |
+
label="Number of Text Elements",
|
| 314 |
+
minimum=1,
|
| 315 |
+
maximum=5,
|
| 316 |
+
value=3,
|
| 317 |
+
step=1
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
submit_button = gr.Button("Generate Image", variant="primary")
|
| 321 |
+
|
| 322 |
+
with gr.Column(scale=2):
|
| 323 |
+
with gr.Tabs():
|
| 324 |
+
with gr.TabItem("Generated Image"):
|
| 325 |
+
image_output = gr.Image(label="Image with Text")
|
| 326 |
+
|
| 327 |
+
with gr.TabItem("Layout Visualization"):
|
| 328 |
+
layout_output = gr.Image(label="Text Layout")
|
| 329 |
+
|
| 330 |
+
with gr.TabItem("Layout Information"):
|
| 331 |
+
layout_info_output = gr.Code(language="json", label="Layout Data")
|
| 332 |
+
|
| 333 |
+
gr.Markdown("""
|
| 334 |
+
## Example Prompts
|
| 335 |
+
|
| 336 |
+
Try these prompts or create your own:
|
| 337 |
+
""")
|
| 338 |
+
|
| 339 |
+
examples = gr.Examples(
|
| 340 |
+
examples=[
|
| 341 |
+
["A movie poster for a sci-fi thriller", 512, 768, 3],
|
| 342 |
+
["A motivational quote on a sunset background", 768, 512, 2],
|
| 343 |
+
["A coffee shop menu with prices", 512, 512, 4],
|
| 344 |
+
["A modern business card design", 512, 384, 3],
|
| 345 |
+
],
|
| 346 |
+
inputs=[prompt_input, width_input, height_input, num_elements_input]
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
submit_button.click(
|
| 350 |
+
fn=process_request,
|
| 351 |
+
inputs=[prompt_input, width_input, height_input, num_elements_input],
|
| 352 |
+
outputs=[image_output, layout_output, layout_info_output]
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
gr.Markdown("""
|
| 356 |
+
## About
|
| 357 |
+
|
| 358 |
+
This is a simplified implementation for demonstration purposes. The full approach described in the paper involves deeper integration of language models with the diffusion process.
|
| 359 |
+
|
| 360 |
+
Running on: """ + str(device))
|
| 361 |
+
|
| 362 |
+
# Launch the app
|
| 363 |
+
if __name__ == "__main__":
|
| 364 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.12.0
|
| 2 |
+
transformers>=4.26.0
|
| 3 |
+
diffusers>=0.14.0
|
| 4 |
+
accelerate>=0.16.0
|
| 5 |
+
numpy>=1.22.0
|
| 6 |
+
Pillow>=9.0.0
|
| 7 |
+
gradio>=3.20.0
|